《分数除法练习》教案3篇【精选推荐】

时间:2022-12-31 13:50:03 教案设计 来源:网友投稿

《分数除法练习》教案1  教学目标  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力下面是小编为大家整理的《分数除法练习》教案3篇【精选推荐】,供大家参考。

《分数除法练习》教案3篇【精选推荐】

《分数除法练习》教案1

  教学目标

  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.

  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答.

  教学难点

  能正确解答分数乘、除法应用题.

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1.花手绢的块数是白手绢的

  2.白手绢块数的正好是花手绢的块数.

  3.花手绢的块数相当于白手绢的

  4.白手绢块数的倍相当于花手绢的块数

  (二)教师提问

  1.求一个数是另一个数的的几分之几用什么方法?

  2.求一个数的几分之几是多少用什么方法?

  3.已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.

  二、讲授新课

  (一)教学例3

  1.课件演示:分数除法应用题

  2.比较.

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析.

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同.

  3.小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几.

  (2)求一个数的几分之几是多少.

  (3)已知一个数的几分之几是多少求这个数.

  4.解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急.

  三、巩固练习

  (一)应用题

  1.一个排球36元,一个篮球40元,一个排球的"价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.

  2.学校有故事书36本,是科技书的,科技书有多少本?

  3.学校有故事书36本,科技书是故事书的,科技书有多少本?

  (二)补充条件并列式解答.

  一条路长15千米,修了全长的,_________________?

  (三)选择正确答案

  1.修一条长240千米的公路,修了,修了多少千米?

  2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

  240×240÷150÷240240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的.十位上的数加上2,就和个位上的数相等.这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?

  2.六一班有学生45人,女生占.女生有多少人?

  3.六一班有男生25人,占全班的.全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2.池塘里有12只鸭,鹅的只数是鸭的.池塘里有多少只鹅?

  12×=4(只)

  3.池塘里有4只鹅,正好是鸭的只数的.池塘里有多少只鸭?

  4÷=12(只)

  教案点评:

  本教学设计把三类应用题放在一起进行教学,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。巩固练习形式多样,使学生的思维得到进一步发展。

《分数除法练习》教案2

  教学目标

  使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。

  教学重难点

  进一步掌握分数除法的计算方法。

  教学准备

  教学过程设计

  教学内容

  师生活动

  教学过程

  一、揭示课题

  二、计算练习

  三、综合练习

  四、课堂小结。

  五、作业

  1、复习法则。

  问:分数除法要怎样计算?

  2、计算:

  5/7÷1014÷4/512/13÷8/9

  三人板演。

  3、练习八17

  上下练习,说说是怎样想的。

  问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?

  4、练习八18

  学生口答,选择说怎样算的?

  1、练习八19第一行

  四人板演;计算时说明要注意的约分等问题。

  2、练习八20

  说说已知什么数量,要求什么数量。

  练习计算。

  口答算式与结果,让学生说说各按怎样的数量关系列式。

  3、练习八21

  问:解答这道题的数量关系是什么?

  学生解答。口答算式。

  为什么3/4×2/5来计算?

  3、口答。

  根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。

  (1)桃树占果树总棵数的2/5。

  (2)三好学生占全班人数的3/20。

  (3)修好了一条路的3/7。

  (4)一堆煤的1/4已经运走。

  (5)这批布的2/3是花布。

  单位“1”的量×几分之几=几分之几的对应数量

  练习八19第二、三

  课后感受

  本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。

《分数除法练习》教案3

  教学目标

  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.

  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答.

  教学难点

  能正确解答分数乘、除法应用题.

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1.花手绢的块数是白手绢的

  2.白手绢块数的正好是花手绢的块数.

  3.花手绢的块数相当于白手绢的

  4.白手绢块数的倍相当于花手绢的块数

  (二)教师提问

  1.求一个数是另一个数的的`几分之几用什么方法?

  2.求一个数的几分之几是多少用什么方法?

  3.已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.

  二、讲授新课

  (一)教学例3

  1.课件演示:分数除法应用题

  2.比较.

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析.

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同.

  3.小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几.

  (2)求一个数的几分之几是多少.

  (3)已知一个数的几分之几是多少求这个数.

  4.解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急.

  三、巩固练习

  (一)应用题

  1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.

  2.学校有故事书36本,是科技书的,科技书有多少本?

  3.学校有故事书36本,科技书是故事书的,科技书有多少本?

  (二)补充条件并列式解答.

  一条路长15千米,修了全长的,_________________?

  (三)选择正确答案

  1.修一条长240千米的公路,修了,修了多少千米?

  2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

  240×240÷150÷240240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的.十位上的数加上2,就和个位上的数相等.这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?

  2.六一班有学生45人,女生占.女生有多少人?

  3.六一班有男生25人,占全班的.全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2.池塘里有12只鸭,鹅的只数是鸭的.池塘里有多少只鹅?

  12×=4(只)

  3.池塘里有4只鹅,正好是鸭的只数的.池塘里有多少只鸭?

  4÷=12(只)

  教案点评:

  本教学设计把三类应用题放在一起进行教学,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。巩固练习形式多样,使学生的思维得到进一步发展。


《分数除法练习》教案3篇扩展阅读


《分数除法练习》教案3篇(扩展1)

——《分数与除法》练习题3篇

《分数与除法》练习题1

  数学五年级:《分数与除法》练习题

  一、分子比分母小的分数叫()。

  二、填空题

  三、在下面的分数中,分别找出真分数,假分数和带分数。

  真分数:()。

  假分数:()。

  带分数:()。

  四、分子是8的假分数有(),其中()能化成带分数,()能化成整数。

  五、用1、3、5、6、12能组成几个假分数,并把它们写出来(分子和分母不用同一个数)__________________________________。

  六、用分数表示下图中的阴影部分,并指出哪些是真分数,哪些是假分数,哪些是带分数。

《分数与除法》练习题2

  1、把单位“1”( )若干份,表示这样的( )或者( )的数叫做分数,表示其中一份的数叫做( ).

  2、把单位“1”*均分成10份,其中的7份就是( ),它的分数单位是( ).有( )个这样的分数单位。

  3、 12毫升=( )升 38cm2 =( ) d㎡ 30cm = ( )m 123㎝3 =( )dm3 (填分数)

  4、 37 的分数单位是( ),它有( )个这样的分数单位.89 的分数单位是( ),它有( )个这样的分数单位.

  5.被除数相当于分数的( ),除数相当于分数的( ),除号相当于( ),商相当于( )。

  6. 78 =( )÷( ) ( )÷27= 427

  5÷( )= 511 23÷49 = ( )( )

  7. 35 kg表示把3kg*均分成( )份,取其中的( )份,每份是( )kg;也表示把( )kg*均分成( )份,取其中的( )份,每份是( )千克。


《分数除法练习》教案3篇(扩展2)

——分数除法应用题练习题3篇

分数除法应用题练习题1

  一、 根据关键句写数量关系。

  “一桶油的 重6千克”,把( )看作单位“1”,( )× =( )

  “男生占全班人数的 ”,把( )看作单位“1”,( )× =( )

  “鸭只数的 等于鸡” 把( )看作单位“1”,( )× =( )

  甲数占乙数的 ”,把( )看作单位“1”,( )× =( )

  二、我会填。

  1、一个数的 是 ,求这个数,列算式是( )

  A、 ÷ B、 ÷ C、 × D、 -

  2、 的 是( );一个数的 是 ,这个数是( );

  ( )的 是6

  3、10千克的 是( )千克,( )千克的 是10千克。

  4、10千克增加它的 是( )千克,( )千克增加它的 是15千克。

  5、8千克汽油用去了 ,还剩下( )千克。

  ( )千克汽油用去了 还剩下10千克。

  6、8千克汽油用去了 千克,还剩下( )千克。

  ( )千克汽油用去了 千克,还剩下5千克。

  三、看图列算式计算。

  四、对比练习

  对比1:

  1、一条公路全长400米,已修全长的 。已修多少米?

  2、一条公路已修320米,正好占全长的 。公路全长多少米?

  3、一条公路全长400米,已修320米。已修全长的几分之几?

  巩固练习:

  1、一筐苹果,吃了 ,正好是10千克,这筐苹果重( )千克。

  2、一堆沙,运走了它的 ,正好是24吨,这堆沙有( )吨。

  3、一根电线长200米,用去了 ,用去了( )米。

  4、学校田径队有24名女同学,是男同学的 ,学校田径队一共有多少名同学?

  5、王李两位师傅做一批零件,王师傅做了40个,占总数的 ;*做了总数的 。*做了多少个?

  对比2:

  1、新庄要挖一条长60米的水渠,一星期挖了全长的 ,还剩多少米?

  2、新庄要挖一条水渠,一星期挖了24米,占全长的 ,水渠全长多少米?

  3、新庄要挖一条水渠,一星期挖了全长的 ,还剩下36米没完成,水渠全长多少

  米?

  提高练习:

  1、 有一袋米,第一周吃了 ,第二周吃了12千克,还6千克。这袋米原有多少千克?第一周吃了多少千克?

  2、 有一袋米,第一周吃了12千克,第二周吃了 ,还剩下 。还剩下多少千克?

  对比3:

  1、 一种电视机原价2500元,现在降价 。现在售价多少元?

  2、一种电视机价 后,售价是2000元。这种电视机原价是多少元?

  巩固练习:

  1、图书馆里有文艺书400本,比科技书多13 ,科技书有多少本?

  2、 图书馆有科技书400本,比故事书少 38 ,故事书有多少本?

  3、一本书原价18元,降了13 ,售价是多少元?

  4、汽车厂8月份比7月份多生产500辆,已知8月份比7月份增产 。7月份生产汽车多少辆?

  5、小明和小华读同一本书,小明读了32页,占全书叶数的25 ,小华读了全书的38 。这本书有多少页?小华还有多少页没有读?(5分)

  6、六(1)班男生人数比女生多 ,女生30人,全班多少人?


《分数除法练习》教案3篇(扩展3)

——分数除法教案

分数除法教案

  作为一位兢兢业业的人民教师,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。如何把教案做到重点突出呢?以下是小编为大家收集的分数除法教案,仅供参考,大家一起来看看吧。

分数除法教案1

  一、 说教材:

  这部分内容是在学过的分数除法的意义和计算法则、分数乘法应用题、用方程解答已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的,这类应用题是教学中的难点,在与求一个数的几分之几是多少的应用题混合练习中,难以判断用乘法还是用除法解答。教学这类应用题,要紧密联系一个数乘分数的意义,先用列方程的方法来解答,在此基础上再教学用分数除法来解答,这样不但加强了与求一个数的几分之几是多少的乘法应用题的联系,同时也加强对应用题的数量关系的分析,特别是判断哪个数量是单位“1”的量,分析它是已知还是未知来确定怎样用方程解。另外,还加强了方程解法与用除法解法之间的联系,使学生在掌握方程解法的基础上,切实学会用除法来解,这样既培养了学生灵活解答分数应用题的能力,又有助于发展学生思维的灵活性。

  教学目标:1、让学生经历解决生活中实际问题的过程,使学生掌握用方程解答“已知一个数的几分之几是多少,求这个数”的应用题;2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。

  教学重点:找准单位“1”,找出数量关系。

  教学难点:能正确地分析数量关系并列方程解答应用题。

  二、 说教学法:

  为实现教学目标,有效地突出重点、突破难点,依据现代认知科学理论,运用直观性原则,采用线段图展示条件和问题,帮助学生理解题意,分析数量关系,确定解题方法,在师生共同分析、教师主导基础上,紧扣学生已有经验,密切数学与生活联系,引导学生通过小组比较、互动、合作讨论等方式分析数量关系,再独立完成解答过程,做到扶放适度,促进学生在半独立、独立实践中掌握知识,提高解决问题的能力,培养学生自主学习意识和创新意识,学会探究问题的方法。

  三、 说教学过程设计及意图:

  教学过程主要分三个层次。

  第一、通过形式多样的复习做铺垫,面向全体学生为学习新知做好充分准备。主要设计三道复习题:1、找单位“1”的量;2、根据分率句写数量关系式;3、分数乘法应用题。

  第二、探究新知教学。首先例1的教学通过教师与学生逐步图示和引导,着重帮助学生分析题中的数量关系,使学生明确这种题型的分析思路与乘法应用题是一致的,再放手让学生通过独立练习,明确解题的基本方法,通过比较复习题与例1的异同,让学生感知乘、除法的内在联系,最后进行口述检验,旨在让学生养成良好的学习习惯;其次在教学例2时,与例1不同之处,只是涉及到两种量,教学画图时要画两条线段,再放手让他们小组合作完成作图,数量关系的分析,放手让他们自己解答,培养他们分析问题、解决问题的能力。

  第三是巩固提高阶段。练习安排上做到循序渐进,第1题基本上同例题一样叙述数量间关系,第2题在叙述上稍做变化,第3道增加一步为两步计算的应用题,旨在培养学生思维灵活性,同时注重对学生语言表达能力的训练。练习中基本上采用全部放手的做法,让学生独立分析解答,教师在引导、鼓励学生完成学习任务,给学生营造自主的学习氛围。练习后,师生共同进行课的,老教师布置课后作业。

分数除法教案2

  【学习目标】

  1、掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,

  能熟练地列方程解答这类应用题。

  2、进一步培养自主探索问题的能力和分析、推理和判断等思维能力。

  3、提高解答应用题的能力。

  【学习重难点】

  1、重点是弄清单位“1”的量,会分析题中的数量关系。

  2、难点是分数除法应用题的特点及解题思路和解题方法。

  【学习过程】

  一、复习

  1、复习题:根据测定,*体内的水分约占体重的24,而儿童体内的水分约占体重的,35

  六年级学生小明的体重为35千克,他体内的水分有多少千克?

  2、观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  3、选择解决问题所需的条件,确定出单位“1”,并说出数量关系式。_______________

  4=体内水分的重量 5

  4列式计算____________________________________________

  二、探索新知

  1、解决例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)结合线段图理解题意,分析题中的数量关,写出等量关系式。_________________

  (

  3)这道题与复习题相比有什么相同点和不同点?

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?

  1”设为χ,列方程来解决问题。 注意解题格式。(将此题在反面按正确格式解答一遍。)

  (5)也可以应用算术方法来解答此题。__________________________________________

  2、阅读例1第(2)个问题,并思考下列问题,若有问题可以小组讨论。

  (1)要求爸爸体重,需要题目中出现的哪两个条件?

  (2)画出线段示意图,将已知条件和问题标注在线段图上。想一想上一题的线段图和这一

  题的线段图有什么区别?

  (3)写出等量关系,列出方程并解答。(在反面)

  三、知识应用:独立完成P38“做一做”,组长检查核对,提出质疑。

  四、层级训练:1、巩固训练:完成P40练习十第1、2、3、5题。

  2、拓展提高:练习十第6、7、8、9题。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案3

  本课题教时数:1本教时为第1教时备课日期10月22日

  教学目标

  1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。

  2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学重难点

  能比较熟练地求比值和把一个比化成简单的整数比。

  能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭示课题

  二、整理知识

  三、组织练习

  四、课堂小结

  本单元我们学习了什么?你学习了哪些内容?

  这节课我们先复习分数除法的有关概念和计算。

  通过复习,大家要进一步掌握分数除法的意义、比的意义和基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。

  1、复习分数除法的意义

  问:分数除法表示的意义是什么?

  你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?

  指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。

  2、复习分数除法计算法则

  提问:我们在分数除法里,学过哪几种情况的计算?

  分数除法计算的方法是怎样的?

  3、笔算练习

  做复习第2题

  指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。

  4、复习比的意义

  问:什么叫比?比的各部分名称是什么?请你举个例子来说明。

  比与除法、分数有什么联系?请你根据4:5来说明。

  5、做复习第3题

  6、复习比的基本性质

  提问:化简比和求比值各是依据什么来做的?

  1、做复习第5题

  2、做复习第6题

  3、做复习第7题

  指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。

  4、做复习第8题

  指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。

  这节课复习了什么内容?你进一步明确了哪些知识?

  课后感受

  教学效果较好,同学们所做的题目的正确率较高。

分数除法教案4

  一、复习

  1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

  如果已知265×362=95930,你能说出答案吗?为什么?

  (引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

  二、教学分数除法的意义

  1、2/7 ×( )=1,括号内填几分之几?为什么?

  2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

  (引导说出分数除法的意义)

  3、完成p25做一做

  三、分数除以整数的计算法则

  1、这节课我们学习分数除法

  2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

  3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

  3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

  你是根据什么知识口算这几道题的?

  4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

  出示例题:一张纸的 *均分成3份,每份是这张纸的几分之几?(图略)

  怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

  根据学生的回答板书:

  3/4÷3 = 3÷34 = 1/4

  你能归纳这种分数除以整数的计算方法吗?

  5、用这种方法口算:

  3/4÷3 4/9÷4 10/9÷5 6/7÷2

  6、质疑

  你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

  7、小组讨论,自主学习分数除以整数

  用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

  (1)分数除以整数,用分子除以整数的商作分子,分母不变。

  (2) 1除以一个分数,结果是该分数的倒数。

  (3)一个分数除以1,结果是原分数。

  你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

  8、小组汇报

  (1)1/5 ÷3=3/15 ÷3=1/15

  (2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

  (3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  (4) ……

  你能归纳自己小组讨论的分数除以整数的计算方法吗?

  (1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

  (2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

  (3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

  (4)……

  9、观察第三种方法:

  1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  这个计算过程还可以更简洁些,你能看出来吗?

  化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

  观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

  (引导学生说出分数除以整数,等于分数乘整数的倒数)

  10、计算方法的优化

  刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

  学生计算后提问:你喜欢那种方法?为什么?

  总结分数除以整数的计算法则:

  分数除以整数(零除外),等于分数乘整数的倒数。

  11、对其他的方法,你又有什么要说的吗?

  (引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

  四、课堂练习

  1、计算下列各题

  2/3÷3 2/11÷2 3/8÷6 5/4÷2

  2、练习七第1题

  3、讨论题

  1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案5

  教学内容

  教科书第1246~125页乘法与除法、分数的初步认识,并完成练习二十三第1~4题

  三维目标

  知识与技能

  .经历对本学期所学知识回顾、梳理的过程,初步学会和复习的方法,逐步养成自觉所学知识的意识和良好的学习习惯

  过程与方法

  进一步理解两、三位数乘一位数和两位数除以一位数的算理,提高学生的计算熟练程度和正确率;进一步提高学生的估算能力,体会估算的实际意义,养成估算习惯

  情感、态度与价值观

  进一步巩固分数的意义,熟练地读写分数,会用分数表示实际操作结果,能熟练地进行简单的同分母分数的加减法计算

  教学重点两、三位数乘一位数和两位数除以一位数

  教学难点两、三位数乘一位数和两位数除以一位数

  教具准备小黑板

  教学过程

  一、回忆梳理本学期学习的内容

  (1)出示教科书第126页主题图,学生看图,说说他们在做什么。

  (2)你能像他们一样,回顾一下本学期的学习内容和自己的学习情况吗?

  (3)小组讨论:四人小组议一议本册书包含哪些知识?在讨论的基础上,将小组的共同意见写在卡片上。

  教师巡视,关注学生交流情况,引导学生按一定的顺序梳理知识。

  (4)小组汇报

  出示小组汇报要求:

  ①请全体同学认真倾听每一位小组代表的发言

  ②请各小组记录员边听边用笔将其他小组与你们小组相同的地方勾画出来。

  ③勾画完之后,请各小组发言的代表对前面同学的发言只作补充,不作重复汇报。

  二、复习乘法与除法

  1.复习口算

  先以口算比赛的形式完成教科书第126页第1题,补充以下口算题。

  80÷8=×5=4×25=65÷8=

  指名汇报,并分别说说是怎样算的。

  2.复习笔算

  (1)问:用竖式计算两、三位数乘一位数和两位数除以一位数时要注意什么?

  (2)学生独立计算教科书第126页第2题,教师巡视,对学习困难的学生及时进行指导。

  (3)全班交流,指名板演,并结合题目说一说两、三位数乘一位数和两位数除以一位数的计算方法。重点让学生说一说乘数中间有0的乘法,如:304×5=

  3.复习估算

  (1)学生先谈一下自己在生活中是否应用过估算,是怎样用的?

  (2)学生独立完成教科书第127页乘法与除法的第3题,同桌再相互说说自己是怎样估算的。

  全班交流,指名说出估算方法,如果学生有不同的估算方法,只要是合理的,都要给予充分肯定。如52×9≈,可以用50×9,也可以用52×10进行估算。

  三、复习分数的初步认识

  1.认识分数

  (1)学生先独立完成教科书第127页分数的初步认识第1题。

  (2)指名口答填写结果,并说一说为什么这样填。通过交流进一步强调*均分。

  2.简单的同分母加减法

  (1)独立完成教科书第127页分数的初步认识第2题。

  (2)全班交流,汇报结果时,结合分数的意义让学生说一说同分母分数加减法的计算方法。

  四、全课

  今天我们复习了什么内容?是怎样进行和复习的?你有什么收获?

  五、练习:完成练习二十三第1,2,3,4题

分数除法教案6

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管*均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米*均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼*均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼*均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼*均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼*均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"*均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )*均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

分数除法教案7

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难点

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3。2+1。68 0。8×0。5 14-7。4 0。3÷1。5 4。8×0。02

  7。8+0。9 1。53-0。7 0。35÷15 0。4×0。8 0。8-0。37

  2.口述 表示的意义.

  3.列式计算.

  (1)把40棵树苗*均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管*均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管*均截成3段,每段长多少米?

  板书: 1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”*均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,*均分成8段,每段长多少?

  ②把1块饼*均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼*均分给4个孩子,每个孩子分得多少块?

  (1)读题列式: 3÷4

  (2)动手操作:怎样把3块饼*均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个 块,然后把12个 *均分成4份,再把3个 拼在一起,每份是 块.

  乙生:把3个圆放在一起,*均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块.(在3÷4后板书 块)

  (4)看图根据乙生分饼的过程说出 表示的意义.

  ①乙生把3块饼*均分成了4份,这样的一份是3块饼的 ,即

  ②甲生把1块饼*均分成了4份,表示这样的3份的数是 .

  (5)都是 ,意义有何不同?(结合算式说出 的两种意义)

  明确: 表示把3*均分成4份,取其中的1份;

  还表示把单位“1”*均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书: )

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).

  2.用分数表示下列各式的商.

  4÷5 11÷13 27÷35

  9÷9 13÷16 33÷29

  3.列式计算.

  (1)把5米长的绳子,*均分成12段,每段长多少米?

  (2)把一个4*方米的圆形花坛分成大小相同的5块,每一块是多少*方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,*均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷4 7÷12 16÷49 25÷24 9÷9

分数除法教案8

  教学目标:

  1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2、引导同学通过动手操作、探索分数除以整数的算理,归纳计算方法,并能根据题目特点灵活选用较合适的计算方法。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  4、将计算与生活紧密结合,培养同学的数学应用意识。

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以和小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼*均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)

  引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7*均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7*均分成2份就是把4份*均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7*均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/71/2=2/7

分数除法教案9

  教学内容

  一个数除以分数

  教材第31、第32页的内容。

  教学目标

  1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。

  2.能够熟练、正确地进行计算。

  3.渗透转化的数学思想。

  重点难点

  重点:理解一个数除以分数的算理,掌握计算方法。

  难点:能够熟练、正确地进行分数除法的计算。

  教具学具

  练习题投影片。

  教学过程

  一导入

  1.口算。

  3.解答应用题。

  投影出示:小明步行2小时走了6千米。他每小时走多少千米?

  学生计算后,说出这道题中的数量关系。

  板书:路程÷时间=速度。

  二教学实施

  揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。

  板书课题:一个数除以分数

  1.出示例2。

  (1)学生读题,明确题意。

  提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)

  (2)列式。

  提问:怎样求小明的速度和小红的速度?

  引导学生利用“速度=路程÷时间”这个关系式列式。

  了2千米”。

  提问:1小时行多少千米,在图上怎样表示?

  小时行了多少千米)

  4.归纳方法。

  老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?

  学生自由发言。

  板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  5.练习。

  (1)完成教材第32页“做一做”的第1、2、3题。

  (2)完成教材第34页练习七的第1~8题。

  学生独立完成,集体订正。

  三课堂作业新设计

  1.在○里填上运算符号,在( )里填上适当的数。

  四思维训练参考答案

  思维训练

  练习七

  板书设计

  3.分数除以分数

  4.甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被

  除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。

  备课参考教材与学情分析

  本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。

  课堂设计说明

  1.借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。

  2.渗透思想,明确结构。

  每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。

分数除法教案10

  教学目标

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学重难点

  教学重点:弄清单位“1”的量,会分析题中的`数量关系。

  教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学过程

  一、复习

  出示复习题:

  1、下面各题中应该把哪个量看作单位“1”?

  2、用方程解下列各题。

  3、根据测定,*体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重×4/5=体内水分的重量。

  4、指名口头列式计算。课件出示。

  二、新授

  1、教学例1

  根据测定,*体内的水分约占体重的2/3,而儿童

  体内的水分约占体重的4/5,小明体内有28千克水分,

  他的体重是爸爸体重的7/15,小明的体重是多少千克?

  爸爸的体重是多少千克?

  例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量

  (3)这道题与复习题相比有什么相同点和不同点?

  (相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

  (5)启发学生应用算术解来解答应用题。

  先在小组内独立解答。

  课件演示计算的算式。

  (根据数量关系式:小明的体重×4/5=体内水分的重量,

  反过来,体内水分的重量÷4/5=小明的体重)。

  2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?

  (1)启发学生找到分率句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

  爸爸:

  小明:

  根据数量关系式:爸爸的体重×7/15=小明的体重

  小明的体重÷7/15=爸爸的体重

  ①解方程:解:设爸爸的体重是χ千克。

  7/15χ=35

  χ=35÷7/15

  χ=75

  ②算术解:35÷7/15=75(千克)

  课件演示计算的算式。

  3、用方程解应用题应注意哪些问题

  首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间

  的等量关系,再确定设哪个量为χ,并列出方程.

  4、巩固练习:P38“做一做”课件出示:

  学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、巩固应用

  1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?

  (先分析数量关系式,然后确定单位“1”,最后再进行解答。)

  2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?

  (注意引导学生发现250ml的鲜牛奶是多余条件)

  3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?

  (引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

  4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?

  独立完成后订正。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

分数除法教案11

  教学内容:

  49~50页的内容及练习十二1~12题。

  教学目标:

  1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

  2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

  3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学难点:

  理解可以用分数表示两个数相除的商。

  教具准备:

  课件

  教学过程:

  一、复习导入

  1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

  2.把一根铁丝*均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?

  3.引入:5除以9,商是多少?板书:5÷9

  如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

  二、新课讲授

  1.教学例1:出示题目

  (1)列出算式。(板书:1÷3=)

  (2)讨论:1除以3结果是多少?你是怎样想的?

  (3)教师画出示意图。把一个蛋糕*均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。

  板书:1÷3= 1/3(个)

  2.教学例2:出示题目

  (1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (2)口述方法及每份分得的结果,教师总结几种不同的分法。

  (3)归纳:从上面的操作可以看出,把3块饼*均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。

  由此可见, 不仅可以理解为把1块饼(单位“1”)*均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)*均分成4份,表示这样1份的数。

  学生相互说说 表示的意义。

  3.教学分数与除法的关系。

  (1)观察1÷3= 3÷4= 这两道算式,

  想一想

  ①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?

  ②用分数表示商时,除式里的被除数,除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)总结三点

  ①分数可以表示除法的商。

  ②在表示除法的商时,要用除数作分母,被除数作分子。

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示

  板书:a÷b=a/b (b≠0)

  (4)这里的b能为0吗?为什么?

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)

  (5)分数与除法有区别吗?区别在哪里?

  (分数是一种数,但也可以看作两个数相除,除法是一种运算)

  4.教学例3:出示题目

  (1)列出算式。板书:7÷10

  (2)怎样计算?。7÷10=

  三、巩固练习。

  1.做一做:独立完成,集体订正。

  2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。

  第3、4题:做在书上,集体订正。

  第5、6题:独立完成,订正时说一说是怎么想的。

  3.作业:练习十二7----11题,选作12题。

  四、课堂小结

  这节课学习了什么知识,你有哪些收获?

  板书设计:

  分数与除法

  例1:1÷3= 1/3(个)

  例2:3÷4=3/4 (个)

  例3:7÷10= 7/10

分数除法教案12

  教学内容:人教版小学数学第十一册p37。“已知一个数的几分之几是多少,求这个数”类型的应用题。

  教学目标:

  1、使学生理解“已知一个数的几分之几是多少,求这个数”类型的应用题的数量关系,能用方程解答。

  2、培养学生的分析、比较、迁移等能力。

  3、建构知识间的联系,渗透“事物间是相互联系的”这一辩证思想。

  教学重难点:

  1、理解数量关系,掌握分析方法。

  2、正确分析数量关系并解答。

  教学过程:

  一、复习准备。

  1、下面这些句子中,哪两个量进行比较,谁为单位“1”?

  ⑴一桶水用去3/4。 ⑵书的价钱是钢笔价钱的1/3。

  师:第一题是部分与总数的比,总数为单位“1”。第二题是一个量同另一个量比。和谁比?谁为单位“1”。

  [点评: 通过对比练习, 帮助学生理解“两个数量的比较”有两种情况: 一是部分与整体之间的关系; 二是两个相对独立的数量之间的关系。 ]

  2、出示准备题。说出关系式,再列式计算。

  爸爸体重75kg,小明的体重是爸爸的7/15。

  ⑴小明的体重是多少千克?

  爸爸的体重×7/15=小明的体重 75×7/15=35(kg)

  ⑵小明体内水分的质量占小明体重的4/5,小明体内有多少千克水分?

  小明的体重×4/5=小明体内水分的质量 35×4/5=28(kg)

  二、探究新知。

  1、激趣引入。

  师:我们对自己的身体应该是再熟悉不过了, 我们的身体内有很多科学知识藏在里面呢,你们知道自己体内水分的含量吗?

  [点评: 通过创设情境, 调动学生积极参与的情感, 让学生在轻松愉快的数学活动中提高分析能力。 ]

  2、出示:

  根据测定,*体内的水分约占体重的2/3,儿童体内的水分约占体重的4/5,照这样计算,小明体内有28kg的水分,和爸爸体内的水分差不多重了。可是小明的体重才是爸爸的7/15。

  [点评: 设计有多余条件的问题, 让学生有目的地筛选, 使学生进一步理解应用题的结构和解题方法, 训练了学生整理信息、解决问题的能力。 ]

  问题一:小明的体重是多少千克?

  出示思考问题,学生先分小组进行讨论。

  ①小明的体重与什么数量有关系?有什么关系?

  ②应该把哪个量看做单位“1”, 为什么?

  ③单位“1”所表示的数已知吗?

  ④怎样求单位“1”所表示的这个数?你能列出关系式吗?讨论后汇报。

  方法一:

分数除法教案13

  教学目标:

  1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

  教学重点:理解分数与除法的关系。

  教学难点:理解分数表示整数除法的商。

  课前准备:课件。

  教学过程:

  一、激活旧知,引发思考

  1.把8块饼*均分给4个小朋友,每人分得多少块?如果有4块饼呢?

  学生口答列式,教师板书。

  提问:这样的问题为什么用除法算?

  指出:把一些物体*均分,求每份是多少,用除法计算。

  2.引入新课

  二、主动思考,认识新知

  1.教学例2

  (1)把刚才呈现的题目改为:把1块饼*均分给4个小朋友,每人分得多少块?

  怎样列式?

  把1块饼*均分给4个小朋友,*均每人能分到1块吗?你是怎样想的?

  每人分得的不满1块,结果可以用分数表示。

  那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?

  (2)学生操作,了解学生是怎样分和怎样想的。组织交流,你是怎么分的?

  (3)小结:把1块饼*均分给4个小朋友,每人分得14块。完成板书。

  2.教学例3:

  把3块饼*均分给4个小朋友,每人能分得多少块?

  可以怎样列式?3÷4得数是多少?

  大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?

  3.独立完成

  把3块饼*均分给5个小朋友,每人能分得多少块?

  3除以5,商是多少?怎样用分数表示?小组交流。

  4.总结归纳

  请大家观察上面两个等式,你发现分数与除法有什么关系?

  被除数÷除数=被除数/除数

  如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b

  讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)

  5.教学试一试。学生尝试填空。你是怎样想的?

  把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)

  6.做练一练第1、3题

  学生独立填写,要求说说填写时是怎样想的。

  7.做练一练的第2题

  学生填写后,引导比较:上下两行题目有什么不同?

  三、练习巩固,加深认识

  1,做练习八第6题

  让学生看图填空。

  交流:结果各是多少米?怎样从图上看出结果?

  追问:如果列式计算,应该怎样列式,得数是多少

  2.做练习八第7题。

  让学生独立完成,交流结果。

  3.做练习八第8题。

  让学生独立解答,交流方法板书。

  四、反思总结

  今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

分数除法教案14

  教学目标:

  1、使学生掌握分数乘加、乘减除加、除减混合运算的顺序,能正确地进行计算。

  2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

  3、运用分数乘除法的相关定律解决实际问题。

  教学重点:熟练掌握运算定律,灵活、准确地进行简便计算,运用分数乘除法解决实际问题。

  教学难点:运用分数乘除法的相关定律解决实际问题。

  温故案

  一、知识要点:分数乘除法、倒数、比。

  1、分数乘法的意义:(1)分数乘整数,就是求几个相同 的 的 运算。

  (2)一个数(整数或分数)乘分数,就是求 的 是多少。

  2、分数除法的意义:分数除法的意义与整数除法的意义 ,就是已知两个因数的 和其中一个 ,求另一个 的运算。

  3、分数乘法的计算(分数和整数相乘、分数乘分数)。

  因为整数都可以看成分母是1的分数,所以分数乘法的计算方法是用 相乘的积作 ,用

  相乘的积作 ,能约分的要先 ,然后再计算。

  4、分数除法的计算(分数除以整数、一个数除以分数)。

  在分数除法中,除以一个不等于0的数,等于乘以这个数的 。

  5、运用乘法运算定律进行分数的简便运算:分数乘法中进行分数的简便运算时经常要用到的运算定律有 。

  6、分数四则混合运算:(1)乘除混合运算的,遇到除以一个数,就转化成 这个数的

  然后采用一次约分的方法计算。(2)四则混合运算的,按先 后 的运算顺序进行计算,有括号的,先算 ,再算 。

  7、倒数的意义和求倒数的方法: 互为倒数;求一个数(0除外)的倒数,只要把这个数的分子和分母 。注意:1的倒数是 ,0有倒数吗?

  8、比的意义和基本性质:两个数 又叫做两个数的比。在两个数的比中,比号前面的数叫做比的 ,比号后面的数叫做比的 ,两者相除多得的商叫做 。比的前项和后项同时 或 相同的数, 不变,这叫做比的基本性质。

  9、比和分数、除法的关系。

  比前项比号后项比值

  除法

  分数

  巩固案

  二、跟踪练习

  (一)填空题:

  1、40分=( )小时 3/5千米=( )米 23×( )=1 1.5和( )互为倒数。

  2、 ( )∶8=1.2∶( )=0.75=( )÷6=( )折=( )成

  3、把一根4米长的绳子*均分成5段,每段长( )米,每段占全长的( )。

  4、把盐和水按1∶19的比例配成盐水,盐占盐水的( )(填分数)

  5、一根钢材长6米,若用去1/2米,还剩( )米;若用去它的1/2,还剩( )米。

  6、甲数是乙数的1.6倍,那么甲数和乙数的比是( )∶( )。

  7、从甲地到乙地,客车要行4小时,货车要行5小时,客车和货车的速度比是( )∶( )。

  8、一个数的2/3是24,这个数的5/6是( )。

  (二)判断题:

  1、1米的1/2 和3米的1/2 一样长。( )

  2、两个分数相除,商一定大于被除数。( )

  3、如果a÷b=4 ,b就是a的4倍.( )

  4、把10克糖放入100克水中,糖占糖水的10%。( )

  5、王芳看一本200页的童话书,第一天看了全书的1/5,第二天应从40页看起。( )

  (三)计算:

  2×3/4= 3/8×6= 3/10×2/3= 7/25×15/14= 6/13÷4= 5/7÷5/2=

  30-1.6÷4/15= 3/5×1/2+3/5÷1/2= 1/5÷6/25-7/2×2/8= (0.75-3/16) ÷(2/9+1/3)=

  (四)列式计算:

  1、8的2/7与5/7的8倍的和是多少? 2、18的5/27减去3/7是多少?

  3、2/3与5/12的和的6/7是多少? 4、42的6/7与21的1/3的和是多少?

  (五)简单应用:

  1、有一个长方形的花坛,长是3/4米,宽是长的2/3,这个花坛的宽是多少米?面积是多少?

  2、李叔叔录入论文,3小时录了这篇论文的1/3,照这样的速度工作8小时,可以录入这篇论文的几分之几?

  3、一共有240千克水果糖,每袋装1/4千克,才装完了3/4,他们已经装完了多少袋?

  知新案

  1、某鞋店进来皮鞋600双。第一周卖出总数的 15 ,第二周卖出总数的 38 。

  ⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?

  2、六年级同学给灾区的小朋友捐款。六一班捐了500元,六二班捐的是六一班的45 ,六三班捐的是六二班的 98 。六三班捐款多少元?

  3、一件西服原价180元,现在的价格比原来降低了15 ,现在的价格是多少元?

  4、希望小学三年级有学生216人,四年级的人数比三年级多 29 ,四年级有学生多少人?

分数除法教案15

  教学目标

  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.

  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答.

  教学难点

  能正确解答分数乘、除法应用题.

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1.花手绢的块数是白手绢的

  2.白手绢块数的 正好是花手绢的块数.

  3.花手绢的块数相当于白手绢的

  4.白手绢块数的 倍相当于花手绢的块数

  (二)教师提问

  1.求一个数是另一个数的的几分之几用什么方法?

  2.求一个数的几分之几是多少用什么方法?

  3.已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.

  二、讲授新课

  (一)教学例3

  1.课件演示:分数除法应用题

  2.比较.

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析.

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同.

  3.小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几.

  (2)求一个数的几分之几是多少.

  (3)已知一个数的几分之几是多少求这个数.

  4.解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急.

  三、巩固练习

  (一)应用题

  1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.

  2.学校有故事书36本,是科技书的 ,科技书有多少本?

  3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?

  (二)补充条件并列式解答.

  一条路长15千米,修了全长的 ,_________________?

  (三)选择正确答案

  1.修一条长240千米的公路,修了 ,修了多少千米?

  2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

  240× 240÷ 150÷240 240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?

  2.六一班有学生45人,女生占 .女生有多少人?

  3.六一班有男生25人,占全班的 .全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  12× =4(只)

  3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

  4÷ =12(只)

  教案点评:

  本教学设计把三类应用题放在一起进行教学,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。巩固练习形式多样,使学生的思维得到进一步发展。


《分数除法练习》教案3篇(扩展4)

——《分数除法》数学教案10篇

《分数除法》数学教案1

  教学内容

  复习分数除法的意义和计算

  教材第46、第47页的内容。

  教学目标

  1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。

  2.熟练掌握分数除法的计算法则,提高灵活解题的能力。

  3.在整理知识体系的过程中,帮助学生掌握复习的方法。

  重点难点

  重点:概念和计算法则的整理。

  难点:运用所学概念,灵活解决问题。

  教具学具

  练习题投影片。

  教学过程

  一、整理本单元的知识

  1.课前布置作业,学生自己整理本单元的知识点。

  2.展示学生的知识结构图。

  二、复习分数除法的意义和计算法则

  1.回忆。

  分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。

  2.根据学生的汇报整理成下表。

  三、课堂作业新设计

  四、思维训练参考答案

《分数除法》数学教案2

  教学内容

  教科书第1246~125页乘法与除法、分数的初步认识,并完成练习二十三第1~4题

  三维目标

  知识与技能

  经历对本学期所学知识回顾、梳理的过程,初步学会和复习的方法,逐步养成自觉所学知识的意识和良好的学习习惯

  过程与方法

  进一步理解两、三位数乘一位数和两位数除以一位数的算理,提高学生的计算熟练程度和正确率;进一步提高学生的估算能力,体会估算的实际意义,养成估算习惯

  情感、态度与价值观

  进一步巩固分数的意义,熟练地读写分数,会用分数表示实际操作结果,能熟练地进行简单的同分母分数的加减法计算

  教学重点两、三位数乘一位数和两位数除以一位数

  教学难点两、三位数乘一位数和两位数除以一位数

  教具准备小黑板

  教学过程

  一、回忆梳理本学期学习的内容

  (1)出示教科书第126页主题图,学生看图,说说他们在做什么。

  (2)你能像他们一样,回顾一下本学期的学习内容和自己的学习情况吗?

  (3)小组讨论:四人小组议一议本册书包含哪些知识?在讨论的基础上,将小组的共同意见写在卡片上。

  教师巡视,关注学生交流情况,引导学生按一定的顺序梳理知识。

  (4)小组汇报

  出示小组汇报要求:

  ①请全体同学认真倾听每一位小组代表的发言。

  ②请各小组记录员边听边用笔将其他小组与你们小组相同的地方勾画出来。

  ③勾画完之后,请各小组发言的代表对前面同学的发言只作补充,不作重复汇报。

  二、复习乘法与除法

  1.复习口算

  先以口算比赛的形式完成教科书第126页第1题,补充以下口算题。

  80÷8=×5=4×25=65÷8=

  指名汇报,并分别说说是怎样算的。

  2.复习笔算

  (1)问:用竖式计算两、三位数乘一位数和两位数除以一位数时要注意什么?

  (2)学生独立计算教科书第126页第2题,教师巡视,对学习困难的学生及时进行指导。

  (3)全班交流,指名板演,并结合题目说一说两、三位数乘一位数和两位数除以一位数的计算方法。重点让学生说一说乘数中间有0的乘法,如:304×5=

  3.复习估算

  (1)学生先谈一下自己在生活中是否应用过估算,是怎样用的?

  (2)学生独立完成教科书第127页乘法与除法的第3题,同桌再相互说说自己是怎样估算的。

  全班交流,指名说出估算方法,如果学生有不同的估算方法,只要是合理的,都要给予充分肯定。如52×9≈,可以用50×9,也可以用52×10进行估算。

  三、复习分数的初步认识

  1.认识分数

  (1)学生先独立完成教科书第127页分数的初步认识第1题。

  (2)指名口答填写结果,并说一说为什么这样填。通过交流进一步强调*均分。

  2.简单的同分母加减法

  (1)独立完成教科书第127页分数的初步认识第2题。

  (2)全班交流,汇报结果时,结合分数的意义让学生说一说同分母分数加减法的计算方法。

  四、全课

  今天我们复习了什么内容?是怎样进行和复习的?你有什么收获?

  五、练习:完成练习二十三第1,2,3,4题

《分数除法》数学教案3

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:

  多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  ×4×3×2×6

  ÷4÷3÷2÷6

  2、列式,说清数量关系

  小明2小时走了6km,*均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,

  1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷÷

  2、探索整数除以分数的计算方法

  (1)2÷如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示小时走了2km这个条件?(将线段*均分成3份,其中2份表示的就是小时走的路程)

  (3)引导学生讨论交流:已知小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的回答把线段图补充完整,并板书出过程。

  先求小时走了多少千米,也就是求2个,算式:2×

  再求3个小时走了多少千米,算式:2××3

  (5)综合整个计算过程:2÷=2××3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算÷,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  ÷=×=2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  教学后记

《分数除法》数学教案4

  【教学内容】

  【教学目标】

  知识目标:

  体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  能力目标:

  培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  【教学重点】整数除以分数的计算法则推导过程。

  【教学难点】理解一个数除以分数的计算法则的推导过程,

  【教学过程】

  一、创设情境导入新课

  唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

  二、自主探究合作交流

  1、小组活动

  (1)出示教材27页“分一分”的第(1)、(2)题

  学生拿出准备好的圆片代表饼,动手分一分。

  每2张一份,可以分成多少份?4÷2=2(份)

  每1张一份,可以分成多少份?4÷1=4(份)

  师:每1/2张一份,可以分成多少份?

  学生动手操作,组内交流,把每个圆都*均分成2份,一共可以分成8份。4÷1/2=8(份)

  师:每1/4张一份,可以分成多少份?

  学生对那个手操作,把每个圆片都*均分成4份,一共可以分成16份。

  4÷1/4=16(份)

  (1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

  (2)学生独立完成教材28页“填一填”“想一想”

  师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

  生:一个数除以分数等于乘这个分数的倒数。

  1、学生独立完成28页的“试一试”。

  集体反馈,同桌之间订正。

  师:通过刚才的计算你发现了什么?

  生:一个数除以一个数(零除外)等于乘这个数的倒数。

  三、课堂练习,巩固运用

  书本练一练

  四、课堂小结畅谈收获

  聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

  (学生谈收获)

  【板书设计】

  整数除以分数

  a÷=a×(b、c≠0)

  【教学反思】

  本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

《分数除法》数学教案5

  教学目标

  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.

  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答.

  教学难点

  能正确解答分数乘、除法应用题.

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1.花手绢的块数是白手绢的

  2.白手绢块数的 正好是花手绢的块数.

  3.花手绢的块数相当于白手绢的

  4.白手绢块数的 倍相当于花手绢的块数

  (二)教师提问

  1.求一个数是另一个数的的几分之几用什么方法?

  2.求一个数的几分之几是多少用什么方法?

  3.已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.

  二、讲授新课

  (一)教学例3

  1.课件演示:分数除法应用题

  2.比较.

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析.

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同.

  3.小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几.

  (2)求一个数的几分之几是多少.

  (3)已知一个数的几分之几是多少求这个数.

  4.解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急.

  三、巩固练习

  (一)应用题

  1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.

  2.学校有故事书36本,是科技书的 ,科技书有多少本?

  3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?

  (二)补充条件并列式解答.

  一条路长15千米,修了全长的 ,_________________?

  (三)选择正确答案

  1.修一条长240千米的公路,修了 ,修了多少千米?

  2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

  240× 240÷ 150÷240 240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?

  2.六一班有学生45人,女生占 .女生有多少人?

  3.六一班有男生25人,占全班的 .全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  12× =4(只)

  3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

  4÷ =12(只)

  教案点评:

  本教学设计把三类应用题放在一起进行教学,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。巩固练习形式多样,使学生的思维得到进一步发展。

《分数除法》数学教案6

  教学目标

  1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型

  2、在解方程中,巩固分数除法的计算方法

  教学重点

  能用解方程解决简单的有关分数的实际问题

  教学难点

  巩固分数除法的计算方法

  教具准备

  挂图

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、创设情境,引入新知

  1、出示主题图

  让学生大胆地提出问题:操场上有多少人参加活动?

  2、解决问题

  鼓励学生用方程解决问题

  3、选择用除法计算借助线段图的动能理清思路

  板书:

  二、尝试解决

  1、试一试第1题

  板书:

  解:设踢足球的有x人。

  4/9x=4x=9

  或4÷4/9=9

  2、试一试,第1题(2)板书:

  学生仔细观察情境图后,提出问题

  学生独立解决问题,可能会出现多种解决问题的策略让学生用方程和除法计算两种方法,板演在黑板上

  全班进行交流

  学生可以列方程解决,也可以用分数除法解决

  集体纠正

  学生独立解方程

  捐名板演

  然后进行全班交流

  集体纠正

  充分利用主题图,让学生大胆地提出问题

  引领学生做好分析理清思路

  鼓励学生独立完成,引导学生讲清解题的思路

  巩固学生用方程计算的方法

  教师指导与教学过程

  学生学习活动过程

  设计意图

  9×1/3=3(人)

  三、练一练

  1、解方程:

  1/5x=73/4x=4

  5/8x=1/123/8x=1

  2、解决问题

  让学生先弄清“八折8/10,可利用方程法解,术法作基本要求”

  3、解决练一练,第3、题

  板书:

  解:设妈妈的身高是xcm15/16x=150

  X=160或

  150×15/16x=160

  解:设鹅的孵化期是x天

  14/15x=28或x=30

  28÷14/15或x=30天

  的意思,即现价是原价也可用算术法解,算术法作基本要求

  学生独立解决

  或用算术法解决问题

  然后进行全班交流纠正

  引导学会寻找有用的数字信息

  结合鸡、鸭、鹅孵化期的长短为学生创设运用分数乘除法解决问题

  板书设计: 分数除法(二)

  解:设操场上有X人参加活动

  x×2/9=6

  x=6÷2/9

  x=6×9/2

  x=27

《分数除法》数学教案7

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。解:设买来大米X千克。x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。解:设航模小组有人。

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

  教学追记:

  本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

《分数除法》数学教案8

  一、教学内容

  苏教版小学数学第十一册第33—38页“分数除法”例1—例4。

  二、简要分析

  本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。

  三、教学过程

  (一)复习旧知,作好铺垫,导入新课。

  1、说出下列各数的倒数(出示卡片)

  2、6、—、—、0.5、 1—、 0.7

  2、用投影打出:下面两题简便计算的根据是什么?

  12÷25=(12×4)÷(25×4)=48÷100=0.48

  11÷125=(11×8)÷(125×8)=88÷1000=0.088

  [简析:商不变规律的应用,为后面学习新知作出充分准备。]

  3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?

  A组:78÷10.35÷1136÷721.8÷9

  B组:—÷1—÷1—÷218÷——÷1

  —÷——÷—4—÷2——÷0.7

  [简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]

  师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。

  (二)指导探索,在新旧知识的衔接上教师加以点拔导学。

  (1)请大家列出B组算式中除数不是1的算式。

  —÷218÷——÷——÷—

  4—÷2— —÷0.7

  (2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?

  [评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]

  师:下面分学习小组进行讨论。

  (3)交流。

  学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。

  学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。

  [评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]

  (教师根据学生的回答,作好下列板书)

  —÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)

  =—×—÷1=18×—÷1

  =—×— =18×—

  (三)引导学生观察、比较、类推,得出结论。

  师问:这里我们是应用的什么进行变化的?(商不变的规律)

  (教者把上面板书用虚线框起)让学生观察比较。

  —÷2=—×—18÷—=18×—

  问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)

  生汇报:除号变成了乘号,除数变成了它的倒数。

  分数除法算式变成了分数乘法算式。

  师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。

  练习:用复合投影片打出:

  将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)

  —÷— —÷— —÷612÷—

  =—×—=—×4 =—×—=12×—

  [评析:抓住时机,练重点难点,强化新知。]

  6、讨论、比较、类推,概括方法。

  问:在刚才的练习中,你认为有什么规律?

  (生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)

  师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?

  生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)

  引导学生讨论:为什么乙数要加上零除外?

  (四)利用法则,练习重点,巩固新知。

  1、—÷3=—×———=12÷—=12×———=

  —÷—=—×———=—÷—=———()———

  2、计算。(并指名板书,注意书写格式)

  —÷3—÷——÷36÷—

  3÷——÷——÷— —÷—

  3、改错。

  (1)9÷—=9÷—=—=10—(2)—÷5=—×—=—

  (3)—÷—=—×—=—

  4、判断。

  (1)1÷—=—÷1(2)a÷b=a×—

  [评析:改错题、判断题的设计,进一步强化了计算法则。]

  (五)作业练习,熟记法则。

  1、练习八第3题的前4题

  第6题的前4题

  2、校对答案。(说出过程,强化法则的应用)

  思考题:计算(1)4—÷2—(2)—÷0.7

  [评析:这里是知识结构的完整,知识点的引伸。]

  (六)总结。

  1、今天我们一起研究了什么内容?

  2、你有哪些收获?

  3、计算过程中应注意什么问题?

  四、教后评析

  本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。

  1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。

  2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。

  3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。

《分数除法》数学教案9

  教学目标

  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.

  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答.

  教学难点

  能正确解答分数乘、除法应用题.

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1.花手绢的块数是白手绢的

  2.白手绢块数的 正好是花手绢的块数.

  3.花手绢的块数相当于白手绢的

  4.白手绢块数的 倍相当于花手绢的块数

  (二)教师提问

  1.求一个数是另一个数的的几分之几用什么方法?

  2.求一个数的几分之几是多少用什么方法?

  3.已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.

  二、讲授新课

  (一)教学例3

  1.课件演示:分数除法应用题

  2.比较.

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析.

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同.

  3.小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几.

  (2)求一个数的几分之几是多少.

  (3)已知一个数的几分之几是多少求这个数.

  4.解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急.

  三、巩固练习

  (一)应用题

  1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.

  2.学校有故事书36本,是科技书的 ,科技书有多少本?

  3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?

  (二)补充条件并列式解答.

  一条路长15千米,修了全长的 ,_________________?

  (三)选择正确答案

  1.修一条长240千米的公路,修了 ,修了多少千米?

  2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

  240× 240÷ 150÷240 240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?

  2.六一班有学生45人,女生占 .女生有多少人?

  3.六一班有男生25人,占全班的 .全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  12× =4(只)

  3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

  4÷ =12(只)

  教案点评:

  本教学设计把三类应用题放在一起进行教学,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。巩固练习形式多样,使学生的思维得到进一步发展。

《分数除法》数学教案10

  分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

  一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

  从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”*均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它*均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼*均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

  二、渗透数学建模思想,强化用方程解答分数除法问题。

  从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

  三、借助线段图分析数量关系,发挥其工具性。

  线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

  本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

  本单元的教育目标是:

  1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

  2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

  3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

  4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

  ●分数除法,安排4课时。

  第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼*均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的.过程。

  第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

  第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

  第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

  分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。


《分数除法练习》教案3篇(扩展5)

——分数除法教案10篇

分数除法教案1

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的.应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

  (二)练习

  果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

  1.找出已知条件和问题

  2.画图并分析数量关系

  3.列式解答

  解1:设一共有果树 棵.

  答:一共有果树640棵.

  解1: (棵)

  (三)教学例2

  例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

  1.教师提问

  (1)题中的已知条件和问题有什么?

  (2)有几个量相比较,应把哪个数量作为单位1?

  2.引导学生说出线段图应怎样画?上衣价格的

  3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)

  4.让学生独立用列方程的方法解答,并加强个别辅导.

  解:设一件上衣 元.

  答:一件上衣 元.

  5.怎样直接用算术方法求出上衣的单价?

  (元)

  6.比较一下算术解法和方程解法的相同之处与不同之处.

  相同点:都要根据数量间相等的关系式来列式.

  不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

  三、巩固练习

  (一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

  提问:谁是单位1?数量间相等的关系式是什么?怎样列式?

  (米)

  (二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

  (三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

  1.课件演示:

  2.列式解答

  四、课堂小结

  这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?

  五、课后作业

  (一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

  (二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

  (三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

  六、板书设计

分数除法教案2

  一、复习

  1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

  如果已知265×362=95930,你能说出答案吗?为什么?

  (引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

  二、教学分数除法的意义

  1、2/7 ×( )=1,括号内填几分之几?为什么?

  2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

  (引导说出分数除法的意义)

  3、完成p25做一做

  三、分数除以整数的计算法则

  1、这节课我们学习分数除法

  2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

  3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

  3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

  你是根据什么知识口算这几道题的?

  4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

  出示例题:一张纸的 *均分成3份,每份是这张纸的几分之几?(图略)

  怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

  根据学生的回答板书:

  3/4÷3 = 3÷34 = 1/4

  你能归纳这种分数除以整数的计算方法吗?

  5、用这种方法口算:

  3/4÷3 4/9÷4 10/9÷5 6/7÷2

  6、质疑

  你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

  7、小组讨论,自主学习分数除以整数

  用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

  (1)分数除以整数,用分子除以整数的商作分子,分母不变。

  (2) 1除以一个分数,结果是该分数的倒数。

  (3)一个分数除以1,结果是原分数。

  你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

  8、小组汇报

  (1)1/5 ÷3=3/15 ÷3=1/15

  (2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

  (3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  (4) ……

  你能归纳自己小组讨论的分数除以整数的计算方法吗?

  (1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

  (2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

  (3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

  (4)……

  9、观察第三种方法:

  1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  这个计算过程还可以更简洁些,你能看出来吗?

  化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

  观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

  (引导学生说出分数除以整数,等于分数乘整数的倒数)

  10、计算方法的优化

  刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

  学生计算后提问:你喜欢那种方法?为什么?

  总结分数除以整数的计算法则:

  分数除以整数(零除外),等于分数乘整数的倒数。

  11、对其他的方法,你又有什么要说的"吗?

  (引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

  四、课堂练习

  1、计算下列各题

  2/3÷3 2/11÷2 3/8÷6 5/4÷2

  2、练习七第1题

  3、讨论题

  1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案3

  教学目标:

  使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,能够正确地进行计算。

  教学重点:

  掌握分数除法的计算法则。

  教学过程:

  一、复习

  说出下列分数的倒数。

  二、新课

  1、教学例3

  提问:按照题意应该怎样列式?(生说师板书)

  想一想:分数除以分数应该怎样计算?(学生回答计算步骤,教师板书)÷=×==3

  教师:分数除以分数的计算方法跟整数除以分数有什么联系?

  让学生总结:(整数除以分数,被除数不变,把除法转化成乘法,也就是转化成乘原分数的倒数。分数除以分数,也是被除数不变,把除以分数转化成乘除数的倒数。)也就是:(教师板书)一个数除以分数,等于这个数乘以除数的倒数。

  学生看书P29读法则。

  教学分数除法的统一法则。

  做完后让学生进行对比,三道题的计算过程有什么相同点?(第一题是乘整数的倒数,第2、3题是乘分数的倒数。)

  教师提问:整数能否看成分数?(可以看成分母是1的分数)

  教师:前面学过的分数除以整数和一个数除以分数的计算法则,能否统一成一个法则呢?(可以,这就是:甲数除以乙数(0除外),等于甲数乘乙数的倒数。教师板书)

  学生看书P30并读统一的`法则。

  三、巩固练习

  1、做P30例4前面的做一做题目。学生独立完成,然后集体订正,订正时让学生说一说法则。

  2、做练习八第5题第1行的小题。第6题的前两栏的题目。

  3、做第7题。注意引导学生列式,(这是求一个数是另一个数的几倍或几分之几的文字题。用除法计算。)

  4、做练习八的第8题。

  学生做后教师让学生说一说想法。

  5、做练习八第9题。

  做题前提问:1米等于多少厘米?1千米等于多少米?1 吨等于多少千克?1小时等于多少分?然后让学生独立做题,做完后集体订正。做练习八第10题。教师让学生独立审题,然后提问:这题求什么?分析以后,让学生独立完成,集体订正。

  四、小结

  教师先问学生今天学习了什么?然后指出:分数除法法则是除法普遍适用的法则。

  五、作业

  练习八第5题第2行的小题,第6题的第3、4栏小题。

分数除法教案4

  教学目标:

  1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

  (1)吃了 是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的.重量

  (4)指名列出方程。 解:设买来大米X千克。

  x- x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。 解:设航模小组有人。

  + =25

  (1+ )=25

  =25

  =20

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

分数除法教案5

  单元教材分析:本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

  单元教学目标:

  1、理解并掌握分数除法的计算方法,回进行分数除法计算。

  2、回解答已知一个数的几分之几是多少求这个数的实际问题。

  3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

  4、能运用比的知识解决有关的实际问题。

  学情分析:

  本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

  教学目标:

  1、让学生理解分数除法的运算意义。

  2、掌握分数除以整数的计算方法。

  3、培养学生的计算能力和分析能力。

  教学过程:备注

  活动一:

  出示例1

  每盒水果糖重100克,3盒有多重?

  1、读题理解题意

  2、列式100*3=300

  3、把乘法算式改成两道除法算式

  300/3=100300/100=3

  4、用千克做单位怎样列式?

  1/10*3=3/10

  5、|用同样的方法改写成除法算

  小结:分数除法的意义

  活动二:

  出示例2

  把一张纸的4/5*均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

  1、把4/5*均分成2份,就是把4个1/5*均分成2份,每份就是2个1/5,就是2/5

  2、把4/5*均分成3份,每份就是4/5的1/2,也就是4/5*1/2

  3、根据上面的折纸实验和算式,你发现什么规律?

  小结:(略)

  活动三:

  巩固练习:

  1、31页做一做1、2

  板书设计

  略去设计

分数除法教案6

  教学内容:

  分数与除法的关系

  教学目标:

  1、使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

  2、运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数,并学会解答“求一个数是另一个数的几分之几”的应用题。

  教学过程:

  一、复习

  1、说说下面各分数的意义,分数单位,以及有几个这样的分数单位。

  2、看句子说把()看作单位“1”,*均分成()分,()占其中的()份。

  二、教学应用题

  例2把1米长的钢管*均截成6段,每段长多少米?

  分析:求每段长多少米,就是求每份数

  列式:1÷6=1/6(米)

  根据分数的意义,把一米长的钢管看作单位“1”,*均分成6份,表示这样1份的数

  二、引入新课

  1、分数与除法有什么关系?

  2、教学例3

  把3只月饼*均分成4份,每份是多少只?

  分析:(1)每份是多少?就是计算3÷4得多少

  (2)图示,把3只月饼*均分成4份,每人得到的1份,是3只月饼的1/4,也就是一只月饼的3/4。

  因此:3÷4=3/4(只)

  3、找一找

  (1)分数与除法的关系

  两个自然数相除,它们的商可以用分数表示。

  被除数÷除数=被除数/除数

  (2)想一想,分数的分母能是0吗,为什么?

  三、巩固练习

  例4五年级同学参加登山活动,男同学有36人,女同学有9人

  (1)男同学人数是女同学的几倍?

  (2)女同学人数是男同学的几分之几?

  分析:男同学人数是女同学的几倍,是以女同学人数为标准,就是求36里面有几个9,用除法计算36/9。女同学人数是男同学的几分之几,是以男同学人数为标准,就是求9是36的几分之几,也用除法计算9/36。

  答:男同学人数是女同学的4倍。

  女同学人数是男同学的9/36。

  四、总结归纳

  1、求一个数是另一个数的几分之几,用除法计算的道理。

  2、让学生应用求一个数是另一个数的算理。

  五、布置作业

  反思:这节课的重点是分数与除法的关系。学生比较容易理解表象,记住分数与除法的关系。但对于深层意义的理解比较困难。教师应采用多种教学手段,在学生自己总结的基础上来掌握概念。可能效果会更好些。在教学谁是谁的几分之几的时候,对于如何列式子的指导应该从谁是谁的几倍这个知识点着手来教学比较妥当。

分数除法教案7

  教学设计

  (一)教学内容

  北师大版五数上册P39-40

  (二)、本课的基本理念

  在分饼具体活动中, 通过自主合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳、交流的能力。

  (三)教材分析

  教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,从而得到两个关系式:12=1/2,73=7/3。再引导学生观察比较这两组关系式,发现分数与除法的关系,并得出分数与除法的关系式。

  (四)学情分析

  学习本课前,学生已经理解了分数的意义和除法的意义,具有了一定的操作画图能力和小组合作能力,知道了除数不能为0。在此基础上学习《分数与除法》就显得比较轻松。假分数与带分数的互化在以后的应用较少,因此要求不必过高,难度不要过大,只要学生会做就可以了。

  (四)教学目标

  1、结合具体的情境观察比较,理解分数与除法的关系,会用分数表示两数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法,理解假与带分数的互化算理,会正确进行互化。

  3、培养学生分析问题的能力,能够解决生活中的实际问题。

  (五)、教学重难点:

  教学重点:目标1。

  教学难点:目标2。

  (六)、教法选择

  教师结合实际情境,引导学生参与探索分数与除法关系的过程,在归纳出关系式后,先引导学生用自己的话说一说这个关系式的意思,再引导学生思考分数的分母能不能是0?。可以利用分数与除法的关系来理解,因为在除法中,0不能作除数,分数中的分母相当于除法中的除数,所以分母也不能是0。最后再讨论探索出假分数的方法,并练习巩固。

  (七)教学准备:圆片若干

  (八)、教学过程

  A、复习引入。

  1、师:同学们,在昨天的学习中,你认识了些什么?

  2、能来试一试吗?(出示小黑板)

  2个1/3是( )。 ( )个1/8是3/8。 14个1/9是 ( )。

  4/5里有4个( )。 15/8里有 ( )个。 2里面有 ( )个1/4。

  B、探索新知。

  1、分数与除法的关系

  ①解决问题1:

  ( 出示小黑板)把1块蛋糕*均分给2个小朋友,每人可以分到几块蛋糕?

  师:老师这儿有些数学问题,你能列出算式来解决吗?

  (学生独立在草稿本上完成,教师巡视)。

  抽生全班集体交流,同时集体订正。(要组织引导学生说清其算式的意义和商的由来等)。

  ②解决问题2:把7块蛋糕*均分给3个小朋友,每人可以分到几块蛋糕?(方法同上)

  ③(师指板书上的算式与商)师:同学们仔细观察,你发现分数与除法有什么关系?和同学交流一下

  (生独立在草稿纸上写,师巡视)。

  ④抽生交流,师适时板书

  被被除数除数 = (除数不为0)

  ⑤并组织学生讨论:分数的分母能不能是0?为什么?

  ⑥师:除法与分数有什么区别?

  ⑦练习1:将下列除法算式改写成分数,把分数改写成除法算式(独立练习后订正,1小题和5小题说方法)

  4/5= 19/8= 21/3= 13/5= 15= 417= 2489= 122=

  2、假分数与带分数互化的方法。

  ①师:你能运用除法与分数之间的关系来试一试解决问题吗?翻开书P39,试一试1题。(学生独立完成后集体订正。)

  ②师(指板书):这样把7/3化成带分数?小组讨论后汇报。8/4呢?

  ③师生小结:把假分数化成带分数,要用分子去除以分母。能整除的,所得的商就是整数;不能整除的,除得的商就是带分数的整数部分,余数是分数部分的分子,分母不变。

  ④练习2: 把21/3,19/8化成带分数或整数?

  ⑤你能把二又三分之一化成假分数吗?小组讨论后汇报

  ⑥归纳小结:把带分数化成假分数,用原来的分母做分母,用分母与整数的乘积再加上原来的分子做分子。

  ⑦练习3: 把三又五分之二 ,四又九分之一化成假分数。同桌互说方法。

  C、练习巩固

  书P40 24 题。( 独立练习后集体订正等。)

  D、全课总结

  (九)、板书设计

  分数与除法

  被除数(分子)

  联系: 被被除数除数 = (除数不为0)

  除数(分母)

  区别: 是一种运算 是一个数

分数除法教案8

  教学目标:

  使学生理解分数除法的意义,理解并掌握分数除以整数的计算法则,能正确地进行计算,并在教学中渗透转化的教学思考方法,培养学生的归纳概括能力。

  重点难点:

  分数除以整数的计算法则

  教学准备:

  实物投影仪

  教学过程:

  一、复习。

  1.根据算式32×25=800写出两道除法算式。

  2.说出下面各数的倒数。

  0.25 、3、 5、 1、

  3.填空。

  (1)30÷5表示把30*均分成( )份,

  求其中( )份是多少。

  (2)求18的 是多少,可以用算式18×( ),

  也可以用算式18÷( ),所以18÷3=18×( )。

  二、新授。

  1、师先从学生的生活经验入手,问:同学们都参过哪些兴趣小组呢?

  大屏幕出示信息窗的情景图,问:大家可以提出哪些除法问题呢?

  板书:给小猴子做一件背心需要多少米花布呢?

  怎样列算式呢?

  师:小组讨论一下,怎样计算呢?

  哪位同学上来交流一下你组的计算过程呢?

  教师归纳总结:

  (1) 可以根据题意画出线段图。

  (2) 利用*均分的思想,把 米*均分成3段,实际上就是把9个 米*均分成3份,每份是3个 米,

  (3)根据分数乘法的意义,把 米*均分成3份,求每份是多少,也就是求 的 是多少。

  1、师小结:分数除以整数,如果分数的分子能被整数整除时,可以直接去除。如果分子不能被整数整除的,就乘分子的倒数。

  2、教学绿点部分。

  现在大家可以自己解决第二个问题了,(大屏幕出示:做一条裤子需要花布多少米?)

  学生独立操作解答。

  此题让学生明白,在解答分数除以整数的情况下,乘分子的倒数可以适用于任何情况,让学生体会将分数除法转化成分数乘法更具有普遍性。

  师:小组讨论交流,观察、比较、分析“ ”和“ ”在计算方法上的异同点。

  最后归纳出分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  问:上述结语中为什么要添上“0除外”?

  三、巩固练习。

  1.课本第61页的第1、2题。

  2.下面的计算有错吗?错的请改正。

  3.填空。

  四、作业。

  1.自主练习第4、8、9题。

  2.判断对错

分数除法教案9

  教学内容:

  教材第27~28页的内容及练习。

  教学目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2.掌握一个数除以分数的计算方法,并能正确计算。

  3.培养学生解决简单实际问题的能力。

  教学重难点:

  1.掌握一个数除以分数的计算方法,并能正确计算。

  2.整数除以分数的计算法则推导过程。

  教学过程:

  一、创设情景 激趣揭题

  1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

  2.引入并板书课题:分数除法(二)

  设计意图:设疑激趣。 明确目标。

  二、扶放结合 探究新知

  1.分一分,引导感知一个数除以分数的意义。

  2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

  3.引导完成28页的填一填,想一想,你发现了什么?

  4.引导归纳计算方法。

  设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

  三、反馈矫正

  出示P28的试一试。

  1.统一分数除法的计算法则。

  2.指导完成P28练一练的1~4题。

  四、小结评价 布置预习

  1.引导小结:通过这节课的学习,你有什么收获?

  2.布置预习: P29 分数除法(三)

  板书设计: 分数除法(二)

  4÷1/2=4×2=8 ;4÷1/4=4×4=16

  一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

分数除法教案10

  教学目标:

  1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

  3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:

  能求一个数的倒数。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  长方形纸片。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼*均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1) 引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7*均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7*均分成2份就是把4份*均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7*均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7*均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7*均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7*均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  (3)比较归纳,发现规律。

  ①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  ②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  ③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  ④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  ⑥那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

  板书设计:

  分数除以整数


《分数除法练习》教案3篇(扩展6)

——《分数除法》数学教案10篇

《分数除法》数学教案1

  一、教学内容

  苏教版小学数学第十一册第33—38页“分数除法”例1—例4。

  二、简要分析

  本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。

  三、教学过程

  (一)复习旧知,作好铺垫,导入新课。

  1、说出下列各数的倒数(出示卡片)

  2、6、—、—、0.5、1—、0.7

  2、用投影打出:下面两题简便计算的根据是什么?

  12÷25=(12×4)÷(25×4)=48÷100=0.48

  11÷125=(11×8)÷(125×8)=88÷1000=0.088

  [简析:商不变规律的应用,为后面学习新知作出充分准备。]

  3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?

  A组:78÷10.35÷1136÷721.8÷9

  B组:—÷1—÷1—÷218÷——÷1

  —÷——÷—4—÷2——÷0.7

  [简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]

  师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。

  (二)指导探索,在新旧知识的衔接上教师加以点拔导学。

  (1)请大家列出B组算式中除数不是1的算式。

  —÷218÷——÷——÷—

  4—÷2——÷0.7

  (2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?

  [评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]

  师:下面分学习小组进行讨论。

  (3)交流。

  学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。

  学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。

  [评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]

  (教师根据学生的回答,作好下列板书)

  —÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)

  =—×—÷1=18×—÷1

  =—×—=18×—

  (三)引导学生观察、比较、类推,得出结论。

  师问:这里我们是应用的什么进行变化的?(商不变的规律)

  (教者把上面板书用虚线框起)让学生观察比较。

  —÷2=—×—18÷—=18×—

  问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)

  生汇报:除号变成了乘号,除数变成了它的倒数。

  分数除法算式变成了分数乘法算式。

  师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。

  练习:用复合投影片打出:

  将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)

  —÷——÷——÷612÷—

  =—×—=—×4=—×—=12×—

  [评析:抓住时机,练重点难点,强化新知。]

  6、讨论、比较、类推,概括方法。

  问:在刚才的练习中,你认为有什么规律?

  (生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)

  师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?

  生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)

  引导学生讨论:为什么乙数要加上零除外?

  (四)利用法则,练习重点,巩固新知。

  1、—÷3=—×———=12÷—=12×———=

  —÷—=—×———=—÷—=———()———

  2、计算。(并指名板书,注意书写格式)

  —÷3—÷——÷36÷—

  3÷——÷——÷——÷—

  3、改错。

  (1)9÷—=9÷—=—=10—(2)—÷5=—×—=—

  (3)—÷—=—×—=—

  4、判断。

  (1)1÷—=—÷1(2)a÷b=a×—

  [评析:改错题、判断题的设计,进一步强化了计算法则。]

  (五)作业练习,熟记法则。

  1、练习八第3题的前4题

  第6题的前4题

  2、校对答案。(说出过程,强化法则的应用)

  思考题:计算(1)4—÷2—(2)—÷0.7

  [评析:这里是知识结构的完整,知识点的引伸。]

  (六)总结。

  1、今天我们一起研究了什么内容?

  2、你有哪些收获?

  3、计算过程中应注意什么问题?

  四、教后评析

  本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。

  1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。

  2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。

  3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。

《分数除法》数学教案2

  【教学内容】

  【教学目标】

  知识目标:

  体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  能力目标:

  培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  【教学重点】整数除以分数的计算法则推导过程。

  【教学难点】理解一个数除以分数的计算法则的推导过程,

  【教学过程】

  一、创设情境导入新课

  唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

  二、自主探究合作交流

  1、小组活动

  (1)出示教材27页“分一分”的第(1)、(2)题

  学生拿出准备好的圆片代表饼,动手分一分。

  每2张一份,可以分成多少份?4÷2=2(份)

  每1张一份,可以分成多少份?4÷1=4(份)

  师:每1/2张一份,可以分成多少份?

  学生动手操作,组内交流,把每个圆都*均分成2份,一共可以分成8份。4÷1/2=8(份)

  师:每1/4张一份,可以分成多少份?

  学生对那个手操作,把每个圆片都*均分成4份,一共可以分成16份。

  4÷1/4=16(份)

  (1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

  (2)学生独立完成教材28页“填一填”“想一想”

  师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

  生:一个数除以分数等于乘这个分数的倒数。

  1、学生独立完成28页的“试一试”。

  集体反馈,同桌之间订正。

  师:通过刚才的计算你发现了什么?

  生:一个数除以一个数(零除外)等于乘这个数的倒数。

  三、课堂练习,巩固运用

  书本练一练

  四、课堂小结畅谈收获

  聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

  (学生谈收获)

  【板书设计】

  整数除以分数

  a÷=a×(b、c≠0)

  【教学反思】

  本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

《分数除法》数学教案3

  (一)教学内容

  北师大版五数上册P39-40

  (二)、本课的基本理念

  在分饼具体活动中, 通过自主合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳、交流的能力。

  (三)教材分析

  教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,从而得到两个关系式:12=1/2,73=7/3。再引导学生观察比较这两组关系式,发现分数与除法的关系,并得出分数与除法的关系式。

  (四)学情分析

  学习本课前,学生已经理解了分数的意义和除法的意义,具有了一定的操作画图能力和小组合作能力,知道了除数不能为0。在此基础上学习《分数与除法》就显得比较轻松。假分数与带分数的互化在以后的应用较少,因此要求不必过高,难度不要过大,只要学生会做就可以了。

  (四)教学目标

  1、结合具体的情境观察比较,理解分数与除法的关系,会用分数表示两数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法,理解假与带分数的互化算理,会正确进行互化。

  3、培养学生分析问题的能力,能够解决生活中的实际问题。

  (五)、教学重难点:

  教学重点:目标1。

  教学难点:目标2。

  (六)、教法选择

  教师结合实际情境,引导学生参与探索分数与除法关系的过程,在归纳出关系式后,先引导学生用自己的话说一说这个关系式的意思,再引导学生思考分数的分母能不能是0?。可以利用分数与除法的关系来理解,因为在除法中,0不能作除数,分数中的分母相当于除法中的除数,所以分母也不能是0。最后再讨论探索出假分数的方法,并练习巩固。

  (七)教学准备:圆片若干

  (八)、教学过程

  A、复习引入。

  1、师:同学们,在昨天的学习中,你认识了些什么?

  2、能来试一试吗?(出示小黑板)

  2个1/3是( )。 ( )个1/8是3/8。 14个1/9是 ( )。

  4/5里有4个( )。 15/8里有 ( )个。 2里面有 ( )个1/4。

  B、探索新知。

  1、分数与除法的关系

  ①解决问题1:

  ( 出示小黑板)把1块蛋糕*均分给2个小朋友,每人可以分到几块蛋糕?

  师:老师这儿有些数学问题,你能列出算式来解决吗?

  (学生独立在草稿本上完成,教师巡视)。

  抽生全班集体交流,同时集体订正。(要组织引导学生说清其算式的意义和商的由来等)。

  ②解决问题2:把7块蛋糕*均分给3个小朋友,每人可以分到几块蛋糕?(方法同上)

  ③(师指板书上的算式与商)师:同学们仔细观察,你发现分数与除法有什么关系?和同学交流一下

  (生独立在草稿纸上写,师巡视)。

  ④抽生交流,师适时板书

  被被除数除数 = (除数不为0)

  ⑤并组织学生讨论:分数的分母能不能是0?为什么?

  ⑥师:除法与分数有什么区别?

  ⑦练习1:将下列除法算式改写成分数,把分数改写成除法算式(独立练习后订正,1小题和5小题说方法)

  4/5= 19/8= 21/3= 13/5= 15= 417= 2489= 122=

  2、假分数与带分数互化的方法。

  ①师:你能运用除法与分数之间的关系来试一试解决问题吗?翻开书P39,试一试1题。(学生独立完成后集体订正。)

  ②师(指板书):这样把7/3化成带分数?小组讨论后汇报。8/4呢?

  ③师生小结:把假分数化成带分数,要用分子去除以分母。能整除的,所得的商就是整数;不能整除的,除得的商就是带分数的整数部分,余数是分数部分的分子,分母不变。

  ④练习2: 把21/3,19/8化成带分数或整数?

  ⑤你能把二又三分之一化成假分数吗?小组讨论后汇报

  ⑥归纳小结:把带分数化成假分数,用原来的分母做分母,用分母与整数的乘积再加上原来的分子做分子。

  ⑦练习3: 把三又五分之二 ,四又九分之一化成假分数。同桌互说方法。

  C、练习巩固

  书P40 24 题。( 独立练习后集体订正等。)

  D、全课总结

  (九)、板书设计

  分数与除法

  被除数(分子)

  联系: 被被除数除数 = (除数不为0)

  除数(分母)

  区别: 是一种运算 是一个数

《分数除法》数学教案4

  教学目标

  1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型

  2、在解方程中,巩固分数除法的计算方法

  教学重点

  能用解方程解决简单的有关分数的实际问题

  教学难点

  巩固分数除法的计算方法

  教具准备

  挂图

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、创设情境,引入新知

  1、出示主题图

  让学生大胆地提出问题:操场上有多少人参加活动?

  2、解决问题

  鼓励学生用方程解决问题

  3、选择用除法计算借助线段图的动能理清思路

  板书:

  二、尝试解决

  1、试一试第1题

  板书:

  解:设踢足球的有x人。

  4/9x=4x=9

  或4÷4/9=9

  2、试一试,第1题(2)板书:

  学生仔细观察情境图后,提出问题

  学生独立解决问题,可能会出现多种解决问题的策略让学生用方程和除法计算两种方法,板演在黑板上

  全班进行交流

  学生可以列方程解决,也可以用分数除法解决

  集体纠正

  学生独立解方程

  捐名板演

  然后进行全班交流

  集体纠正

  充分利用主题图,让学生大胆地提出问题

  引领学生做好分析理清思路

  鼓励学生独立完成,引导学生讲清解题的思路

  巩固学生用方程计算的方法

  教师指导与教学过程

  学生学习活动过程

  设计意图

  9×1/3=3(人)

  三、练一练

  1、解方程:

  1/5x=73/4x=4

  5/8x=1/123/8x=1

  2、解决问题

  让学生先弄清“八折8/10,可利用方程法解,术法作基本要求”

  3、解决练一练,第3、题

  板书:

  解:设妈妈的身高是xcm15/16x=150

  X=160或

  150×15/16x=160

  解:设鹅的孵化期是x天

  14/15x=28或x=30

  28÷14/15或x=30天

  的意思,即现价是原价也可用算术法解,算术法作基本要求

  学生独立解决

  或用算术法解决问题

  然后进行全班交流纠正

  引导学会寻找有用的数字信息

  结合鸡、鸭、鹅孵化期的长短为学生创设运用分数乘除法解决问题

  板书设计: 分数除法(二)

  解:设操场上有X人参加活动

  x×2/9=6

  x=6÷2/9

  x=6×9/2

  x=27

《分数除法》数学教案5

  教学内容

  教科书第1246~125页乘法与除法、分数的初步认识,并完成练习二十三第1~4题

  三维目标

  知识与技能

  .经历对本学期所学知识回顾、梳理的过程,初步学会和复习的方法,逐步养成自觉所学知识的意识和良好的学习习惯

  过程与方法

  进一步理解两、三位数乘一位数和两位数除以一位数的算理,提高学生的计算熟练程度和正确率;进一步提高学生的估算能力,体会估算的实际意义,养成估算习惯

  情感、态度与价值观

  进一步巩固分数的意义,熟练地读写分数,会用分数表示实际操作结果,能熟练地进行简单的同分母分数的加减法计算

  教学重点两、三位数乘一位数和两位数除以一位数

  教学难点两、三位数乘一位数和两位数除以一位数

  教具准备小黑板

  教学过程

  一、回忆梳理本学期学习的内容

  (1)出示教科书第126页主题图,学生看图,说说他们在做什么。

  (2)你能像他们一样,回顾一下本学期的学习内容和自己的学习情况吗?

  (3)小组讨论:四人小组议一议本册书包含哪些知识?在讨论的基础上,将小组的共同意见写在卡片上。

  教师巡视,关注学生交流情况,引导学生按一定的顺序梳理知识。

  (4)小组汇报

  出示小组汇报要求:

  ①请全体同学认真倾听每一位小组代表的发言。

  ②请各小组记录员边听边用笔将其他小组与你们小组相同的地方勾画出来。

  ③勾画完之后,请各小组发言的代表对前面同学的发言只作补充,不作重复汇报。

  二、复习乘法与除法

  1.复习口算

  先以口算比赛的形式完成教科书第126页第1题,补充以下口算题。

  80÷8=×5=4×25=65÷8=

  指名汇报,并分别说说是怎样算的。

  2.复习笔算

  (1)问:用竖式计算两、三位数乘一位数和两位数除以一位数时要注意什么?

  (2)学生独立计算教科书第126页第2题,教师巡视,对学习困难的学生及时进行指导。

  (3)全班交流,指名板演,并结合题目说一说两、三位数乘一位数和两位数除以一位数的计算方法。重点让学生说一说乘数中间有0的乘法,如:304×5=

  3.复习估算

  (1)学生先谈一下自己在生活中是否应用过估算,是怎样用的?

  (2)学生独立完成教科书第127页乘法与除法的第3题,同桌再相互说说自己是怎样估算的。

  全班交流,指名说出估算方法,如果学生有不同的估算方法,只要是合理的,都要给予充分肯定。如52×9≈,可以用50×9,也可以用52×10进行估算。

  三、复习分数的初步认识

  1.认识分数

  (1)学生先独立完成教科书第127页分数的初步认识第1题。

  (2)指名口答填写结果,并说一说为什么这样填。通过交流进一步强调*均分。

  2.简单的同分母加减法

  (1)独立完成教科书第127页分数的初步认识第2题。

  (2)全班交流,汇报结果时,结合分数的意义让学生说一说同分母分数加减法的计算方法。

  四、全课

  今天我们复习了什么内容?是怎样进行和复习的?你有什么收获?

  五、练习:完成练习二十三第1,2,3,4题

《分数除法》数学教案6

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02

  7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37

  2.口述表示的意义.

  3.列式计算.

  (1)把40棵树苗*均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管*均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管*均截成3段,每段长多少米?

  板书:1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”*均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,*均分成8段,每段长多少?

  ②把1块饼*均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼*均分给4个孩子,每个孩子分得多少块?

  (1)读题列式:3÷4

  (2)动手操作:怎样把3块饼*均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个块,然后把12个*均分成4份,再把3个拼在一起,每份是块.

  乙生:把3个圆放在一起,*均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)

  (4)看图根据乙生分饼的过程说出表示的意义.

  ①乙生把3块饼*均分成了4份,这样的一份是3块饼的,即

  ②甲生把1块饼*均分成了4份,表示这样的3份的数是.

  (5)都是,意义有何不同?(结合算式说出的两种意义)

  明确:表示把3*均分成4份,取其中的1份;

  还表示把单位“1”*均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书:)

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().

  2.用分数表示下列各式的商.

  4÷511÷1327÷35

  9÷913÷1633÷29

  3.列式计算.

  (1)把5米长的绳子,*均分成12段,每段长多少米?

  (2)把一个4*方米的"圆形花坛分成大小相同的5块,每一块是多少*方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,*均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷47÷1216÷4925÷249÷9

《分数除法》数学教案7

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  (略)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

  就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

  三、巩固练习.

  (一)请你根据算式补充不同的条件.

  学校有苹果树30棵,________________,桃树有多少棵,

  (二)分析下面的数量关系,并列出算式或方程.

  1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

  2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

  3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?

  4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?

  四、归纳总结.

  今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

《分数除法》数学教案8

  练习目标:

  1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

  2运用所学的分数除法的知识,解决相应的实际问题.

  练习过程:

  一、基础知识练习:

  1、计算:

  ⑴2/1328/943/1035/11522/232

  ⑵3/10223/242617/21518/9713/154

  (学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

  2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?

  引导学生小结:除以一个不等于0的数,等于H这个数的倒数.

  二深入练习

  1、计算下面各题,比较它们的计算方法.

  5/6+2/35/6-2/35/62/35/62/3

  2、

  (让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)

  根据学生的回答,教师作如下板书:

  一个数除以小于1的数,商大于被除数;

  一个数除以1,商等于被除数;

  一个数除以大于1的数,商小于被除数。

  三、解决问题:

  练习八第7至8题。

  第7题学生独立解答。

  第8题学生解答时提示学生需要先统一单位。

  小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

  四、作业练习:

  1、33页第5、9题。

  2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

  五、教学反思:

《分数除法》数学教案9

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管*均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米*均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼*均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼*均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼*均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼*均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"*均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )*均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

《分数除法》数学教案10

  教学目标:

  1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2、引导同学通过动手操作、探索分数除以整数的算理,归纳计算方法,并能根据题目特点灵活选用较合适的计算方法。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  4、将计算与生活紧密结合,培养同学的数学应用意识。

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以和小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼*均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)

  引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7*均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7*均分成2份就是把4份*均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7*均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/71/2=2/7


《分数除法练习》教案3篇(扩展7)

——《分数除法》教学反思5篇

《分数除法》教学反思1

  《一个数除以分数》是在一个数除以整数的基础上,继续学习一个数除以分数的方法。如何推导分数除法的计算方法,有多种方法。例如:利用商不变规律进行推导;利用等式的基本性质进行推导;利用逆运算关系和分数的基本性质进行推导;联系实际问题分析、推导等。而教材选用的是最后一种,意在结合具体的情景,通过线段图的分析,让学生明白算理。而在以前的计算题教学中,我习惯让学生通过大量的例子归纳方法,让学生经历从特殊到一般的归纳过程。所以,在第一次教学时我先让学生计算两组比较简单的算式,并且引导学生对算式进行观察、比较和分析,让学生通过猜想——尝试——验证,发现一个数除以分数和乘这个分数的倒数的结果都相等。然后进行练习,学生学习效果也不错,教学过程一切自然流畅。

  可是,下课后,一位学生问我:“老师,一个数除以分数为什么要乘这个分数的倒数呢?”这句话引起了我的反思。是啊!一个数除以分数的算理还没有讲清楚呢?因为一直以来都是这样教学,只是通过猜想、尝试、验证、归纳一个数除以分数和乘这个分数的倒数的结果相等,也就把计算法则作为一个规定硬性地塞给了孩子,而忽视了算理的教学,这种学生只知其然而不知其所以然。翻阅教材,发现教材是通过画线段图让学生来明白算理,注重的算理的教学,忽视猜想、尝试、验证、归纳这种数学思想的渗透。如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?

  经过仔细反思之后,我在教室进行了二次教学,调整了我的教学过程。我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结。此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的笑容。孩子们高兴地说分数除法的算理也恰恰证明了我们猜想是正确的。

  从这节课,使我感悟到,计算教学,最省事的教法就是把计算方法和盘托出,直接告诉学生,然后进行大量的训练。可是这样教学,尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。为了培养学生的学习能力和探究能力,促进学生的发展,我们应该舍得花时间让学生经历计算方法的探索过程。这也是课程改革理念在计算教学中的具体体现。

《分数除法》教学反思2

  本节课是五年级下册第三单元内容,是在学习了分数除法(一)的内容,即除数是整数的除法的基础上进行教学的。这节课的教学重点是使学生理解一个数除以分数的意义及计算方法,教学难点是使学生理解一个数除以分数的意义和基本算理。

  教学中,我先设计了“分一分”活动,从整数除以整数到整数除以分数,借助除法的意义和图形语言,使学生初步体会“除以一个分数”与“乘这个分数的倒数”之间的关系;接下来的“画一画”活动,指导学生利用图示分析数量关系,进一步体会分数除法的意义和算法,体现数形结合的思想;最后的“填一填,想一想”中,通过对前面问题思考过程的整理,使学生进一步理解分数除法的意义,让学生在观察、比较、分析中发现问题中蕴含的规律。课中采用让学生通过观察、比较与思考,发现知识间的内在联系,主要是教会学生一种学习方法,即分数除法的意义可联系整数除法的意义进行学习。

  课上完后,效果并没有我想象中那么好,有许多不尽人意的地方,最主要是时间安排不当,有点前松后紧,致使后面布置的进一步练习没有当堂去做而改成课后完成,造成缺憾。改进方法:在经历知识的形成时,时间应安排紧凑些,增强同桌小组合作的实效性."画一画"环节可考虑让学生直接在书本上完成.这样也许就不会浪费时间.而整堂课安排更为合理一些,就能让学生更明白学习数学的价值,从而达到教学的目的.其次在学生独立思考或同桌合作交流时,还是发现有部分学生没参与进来,或参与不够。那么在今后教学中无论课中、还是课余都应多加强对这部分学生的关注。

《分数除法》教学反思3

  一、教学内容:分数与除法,教材第65、66页例1和例2

  二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程:

  (一)复习

  把6块饼*均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼*均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼*均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”*均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。

  老师根据学生回答。(板书:1 ÷ 3 =3(1)块)

  (4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼*均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它*均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼*均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), *均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。

  方法二:可以把3 块饼叠在一起,再*均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  ( 3 )加深理解。(课件演示)

  老师:4(3)块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。

  ②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。

  现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “*均分成4 份,表示这样3 份的数;还可以表示把3 *均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼*均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)

  ②刚才大家都是拿学具亲自操作的`,如果不借助学具,你能想像出5块饼*均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)

  ②1米的8(3)等于3米的( )

  ③把2米的绳子*均分3段,每段占全长的 ( ),每段长( )米。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的10(1) ( )

  ②1米的4(3)与3米的4(1)一样长。( )

  ③一根木料*均锯成3段,*均每锯一次的时间是所用的总时间的3(1)。( )

  ④把45个作业本*均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想

  ①把一个4*方米的圆形花坛分成大小相同的5块,每一块是多少*方米?

  (用分数表示)

  ②小明用45分钟走了3千米,*均每分钟走了多少千米?每千米需要多少时间?

《分数除法》教学反思4

  《分数除法三》是北师大版小学数学第十册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?教学时,我没有采用书上的情境,而是从学生的生活实际引入。教学一开始我就结合学生的生活实际提出相关的数学问题,例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

  让学生理解题中的数量关系是解决分数除法应用题的`关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。

  教学中,给学生提供探究的*台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

《分数除法》教学反思5

  个数除以分数是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过图形和多个例子来证明一个数除以分数就是乘以这个分数的倒数。我采用数形结合的教学策略,引导学生在分析题意、弄清数量关系的基础上,理解算理、探究算法。实际上就是先让学生画线段图,用图形语言揭示分数除法计算过程的几何意义,然后,有意识的引导学生将“图”和“式”对照起来,进行分析和说理。帮助学生理解除以一个分数怎么就可以转化为乘它的倒数了呢?这节课的教学重点是学会一个数除以分数的计算方法,难点是理解一个数除以分数的算理。

  教学目标我是这样定位的:

  1、通过合作探究、讨论交流,理解一个数除以分数的算理,概括并掌握分数除法的计算方法,并能正确地进行计算。

  2、在合作探究的过程中,提高迁移类推、分析比较的综合能力。

  3、获得成功的体验,认同数学在生活中应用的广泛性。

  在新课之前,我先做了个复习铺垫,让学生算算小红步行每小时走多少千米,引出数量关系式,路程÷时间=速度。然后呈现了书本上的主题图,把抽象的计算置于具体的情意中,通过解决“谁走得更快些”,列出分数除法的算式,接下来,让学生根据学习经验初步猜想“一个数除以分数”的计算方法,为学生提供开放的,富有挑战性的问题情境,从而激发学生的学习动机。有了猜想以后,我引导学生借助线段图来解决小明速度的问题,感受算理,推导算法,从而来验证当初的猜想。这部分的数学内容我主要渗透了数形结合、转化等数学思想方法,把除法转化成乘法计算,对学生来说是认识上的一次飞跃,在这一过程中主要是不断引导学生发现将2÷2/3转化为2÷2×3表示的是先求什么再求什么,进而转化为2×3/2的依据又是什么”,使学生掌握知识的内在联系并把新知纳入已有的认识结构的过程中,自然感受到每一步的转化都是新、旧知识、方法的转化。质疑:对于两个数都是分数的除法算式适合吗?再次组织学生通过自主探究来验证“前面总结出的方法是不是对其他除数是分数的除法也同样适用?”深入理解算理,掌握算法。这样的设计,我意图让学生真实地经历知识的探索、发现过程,从而起到培养和提高学生的学习能力的作用。

  总结出算法之后,我首先让学生用自己的语言先来概括一个数除以分数的计算方法。然后又出示了一个数除以整数的数学问题,让学生通过解决一个数除以整数的计算,用比较简练的语言概括出分数除法的计算方法。将上节课与这节课的教学内容进行了整合,沟通了新旧知识的联系,进一步理解算理,统一了算法。

  对于这堂课,我感觉学生对于算法比较好理解和接受,但对于算理的理解存在有很大的难度,需要在练习中慢慢去理解和体会。


《分数除法练习》教案3篇(扩展8)

——《分数除法的意义和计算法则》教案设计3篇

《分数除法的意义和计算法则》教案设计1

  教学目标

  1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.

  2.掌握分数除以整数的计算法则,并能正确的进行计算.

  3.培养学生分析能力、知识的迁移能力和语言表达能力.

  教学重点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学难点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学过程

  一、复习引新

  (一)说出下面各数的倒数.

  0。3 6

  (二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)

  (三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)

  二、新授教学

  (一).教学分数除法的意义(演示课件:分数除法的意义)

  1.每人吃半块月饼,4个人一共吃多少块月饼?

  教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )

  2.两块月饼,*均分给4人,每人分得多少块?怎样列式?

  列式:2÷4

  3.两块月饼,分给每人半块,可以分给几个人?

  列式:

  教师提问:说一说结果是多少?你是如何得出结果的?

  4.组织学生讨论:分数除法的意义.

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.

  5.练习反馈.

  根据: ,写出 ,

  (二)教学分数除以整数的计算法则

  1.出示例1.把 米铁丝*均分成2段,每段长多少米(演示课件:分数除以整数)

  (1)求每段长多少米怎样列算式?

  (2)以小组为单位讨论一下得多少呢?

  米*均分成2段就是要把6个 米*均分成2份,每份是3个 米是 米.

  (3)教师板书整理.

  (米)

  2.教师质疑:如果把 米铁丝*均分成3段、6段怎样计算?

  也可以这样想:把 米铁丝*均分成3段,就是求 米的. 是多少,列式是:

  把 米铁丝*均分成6段,就是求 米的 是多少,列式是:

  3.教师继续质疑:如果把 米铁丝*均分成4段每段长多少米?怎样计算?

  (米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.

  三、巩固练习

  (一)计算下面各题.

  学生独立完成,教师巡视,进行个别辅导.

  (二)求未知数

  1. 2.

  (三)判断.

  1.分数除法的意义与整数除法的意义相同.( )

  2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )

  3. ( )

  4. ( )

  5. ( )

  (四)解答下面各题.

  1.把 *均分成4份,每份是多少?

  2.什么数乘以6等于 ?

  3.一个正方形的周长是 米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  (一)计算下面各题.

  (二)解下列方程.

  六、板书设计

  分数除法


《分数除法练习》教案3篇(扩展9)

——分数除法教案范文集合六篇

分数除法教案范文集合六篇

  作为一名默默奉献的教育工作者,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。那么优秀的教案是什么样的呢?以下是小编精心整理的分数除法教案6篇,仅供参考,欢迎大家阅读。

分数除法教案 篇1

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难点

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02

  7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37

  2.口述表示的意义.

  3.列式计算.

  (1)把40棵树苗*均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管*均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管*均截成3段,每段长多少米?

  板书:1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”*均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,*均分成8段,每段长多少?

  ②把1块饼*均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼*均分给4个孩子,每个孩子分得多少块?

  (1)读题列式:3÷4

  (2)动手操作:怎样把3块饼*均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个块,然后把12个*均分成4份,再把3个拼在一起,每份是块.

  乙生:把3个圆放在一起,*均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)

  (4)看图根据乙生分饼的过程说出表示的意义.

  ①乙生把3块饼*均分成了4份,这样的一份是3块饼的,即

  ②甲生把1块饼*均分成了4份,表示这样的3份的数是.

  (5)都是,意义有何不同?(结合算式说出的两种意义)

  明确:表示把3*均分成4份,取其中的1份;

  还表示把单位“1”*均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书:)

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().

  2.用分数表示下列各式的商.

  4÷511÷1327÷35

  9÷913÷1633÷29

  3.列式计算.

  (1)把5米长的绳子,*均分成12段,每段长多少米?

  (2)把一个4*方米的圆形花坛分成大小相同的5块,每一块是多少*方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,*均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷47÷1216÷4925÷249÷9

分数除法教案 篇2

  分数除法一(分数除以整数)

  教学目标和要求

  1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2, 探索并掌握分数除以整数的计算方法,并能正确计算。

  3, 能够运用分数除以整数解决简单的实际问题。

  教学重点

  分数除以整数的计算方法。

  教学难点

  分数除以整数的计算方法

  教学准备

  教学时数

  1课时

  教学过程

  一, 涂一涂,算一算

  1, 把一张纸的4/7*均分成2份,每份是这张纸的几分之几?

  2, 把一张纸的4/7*均分成3份,每份是这张纸的几分之几?

  (1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

  (2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7*均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

  二, 填一填,想一想

  1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

  2, 师导学生根据前面的三个活动,总结算法。3,

  3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

  三, 试一试

  练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

  四, 练一练

  1,第26页第2,3题,让学生独立解决。

  教学内容(课题)

分数除法教案 篇3

  教学目标:

  能力目标:培养学生动手动脑能力,以及计算能力。

  知识目标:

  体验整数除以分数的计算方法,并能正确的计算。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

  教学重点:整数除以分数的计算方法。

  教学策略:

  在小组间交流合作的基础上,提高计算能力和计算速度。

  教学准备:小黑板

  教学过程:

  一、导入新课。

  前一课我们学习了整数除以分数的计算方法,你们还记得吗?老师考一考你们好吗,看题目。

  6÷=÷=÷=÷=

  2÷=÷=÷=÷=

  通过提问,全班订正,导入新课。并评价。

  二、用小黑板出示下列题目。

  3x=x=10x=25x=

  提问学生解方程的规律,并指名说一说第一小题的解法。

  其它题目独立作,全班订正。

  三、课本第三题

  指名说出题目的意思,然后解答,全班判定。

  四、第四题

  1、先独立计算,全班订正。

  2、小组间交流发现了什么规律。

  3、全班交流。

  4、教师小结。

  板书设计:

  整数除以分数

  除以真分数商大于整数

  整数除以分数除以1商等于整数

  除以假分数商小于整数

分数除法教案 篇4

  一、复习

  1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

  如果已知265×362=95930,你能说出答案吗?为什么?

  (引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的`运算)

  二、教学分数除法的意义

  1、2/7 ×( )=1,括号内填几分之几?为什么?

  2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

  (引导说出分数除法的意义)

  3、完成p25做一做

  三、分数除以整数的计算法则

  1、这节课我们学习分数除法

  2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

  3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

  3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

  你是根据什么知识口算这几道题的?

  4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

  出示例题:一张纸的 *均分成3份,每份是这张纸的几分之几?(图略)

  怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

  根据学生的回答板书:

  3/4÷3 = 3÷34 = 1/4

  你能归纳这种分数除以整数的计算方法吗?

  5、用这种方法口算:

  3/4÷3 4/9÷4 10/9÷5 6/7÷2

  6、质疑

  你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

  7、小组讨论,自主学习分数除以整数

  用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

  (1)分数除以整数,用分子除以整数的商作分子,分母不变。

  (2) 1除以一个分数,结果是该分数的倒数。

  (3)一个分数除以1,结果是原分数。

  你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

  8、小组汇报

  (1)1/5 ÷3=3/15 ÷3=1/15

  (2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

  (3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  (4) ……

  你能归纳自己小组讨论的分数除以整数的计算方法吗?

  (1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

  (2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

  (3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

  (4)……

  9、观察第三种方法:

  1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  这个计算过程还可以更简洁些,你能看出来吗?

  化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

  观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

  (引导学生说出分数除以整数,等于分数乘整数的倒数)

  10、计算方法的优化

  刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

  学生计算后提问:你喜欢那种方法?为什么?

  总结分数除以整数的计算法则:

  分数除以整数(零除外),等于分数乘整数的倒数。

  11、对其他的方法,你又有什么要说的吗?

  (引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

  四、课堂练习

  1、计算下列各题

  2/3÷3 2/11÷2 3/8÷6 5/4÷2

  2、练习七第1题

  3、讨论题

  1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案 篇5

  教材分析

  这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

  学情分析

  在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

  教学目标

  逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

  教学重点和难点

  1、 能确定单位“1”,理清题中的数量关系。

  2、利用题中的等量关系用方程解答。

  教学过程

  一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。

  ⑴、梨的重量比苹果多了( )千克。

  ⑵、梨的重量是( )千克。

  2、钢笔X元,比毛笔少了3元 。

  ⑴、钢笔比毛笔少了( )元。

  ⑵、毛笔是( )元。

  3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授课

  1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

  (1)卖了 是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

  (4)指名列出方程。解:设运来苹果X千克。

  x-36=20

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。

  解:设航模小组有人。

  (1+)=25

  =25÷

  =20

  答:略。

  三、小结

  1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

分数除法教案 篇6

  【学习目标】

  1、知道分数除法的意义,掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识理解整数除以分数,总结法则,正确计算。

  3、培养观察、比较、分析的能力和语言表达能力,提高计算能力。

  【学习重难点】

  1、重点是理解算理,正确总结、应用计算法则。

  2、难点是理解整数除以分数的算理。

  【学习过程】

  一、复习

  1、复习整数除法的意义是什么?_______________________________________________

  2、根据已知的乘法算式:5×6=30,写出相关的两个除法算式。___________________

  2、口算下面各题:

  1323843151×3 × × × ×6 × 543839412115

  二、探索新知

  1、认真阅读,仔细观察例1,想一想左右两边的题组有什么不同?_________________

  右边的题组是怎样得来的?_________________________________________________

  2、讨论:右边的两个分数除法算式是怎样求出得数的?___________________________

  思考:分数除法的意义是什么?_____________________________________________

  数,求另个一个因数。(都是乘法的逆运算。)

  3、巩固分数除法意义的练习:P28“做一做”

  4、阅读例2题目,自己拿出一张纸试着折一折,涂一涂,看你能够想到几种不同的折法?

  对照不同的折法,列式计算,注意它们的计算过程以及算理。

  5、比较例2出现的两种计算方法的异同?你觉得哪种算法的适用范围更广?为什么? _________________________________________________________________

  6、阅读例2的第二个问题,独立列式计算,并用折纸来验证自己算对了没有? _________________________________________________________________

  7、根据自己的折纸实验和算式,说一说分数除以整数要如何计算?

  ________________________________________________________________

  分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、知识应用:独立完成下面各题,组长检查核对,提出质疑。

  6115559÷3 ÷3 ÷20 ÷5 ÷10 ÷6 72168313

  四、层级训练:1、巩固训练:P32练习八第1、2题;2、拓展提高:P32练习八第3题

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)


《分数除法练习》教案3篇(扩展10)

——有关分数除法教案锦集7篇

有关分数除法教案锦集7篇

  作为一位优秀的人民教师,往往需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。怎样写教案才更能起到其作用呢?下面是小编精心整理的分数除法教案7篇,仅供参考,欢迎大家阅读。

分数除法教案 篇1

  教学内容:

  教材第29~30页“分数除法(三)”。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

  2.在解方程中,巩固分数除法的计算方法。

  教学重难点:

  1.能够体会方程是解决实际问题的重要模型。

  2.能够用方程解决实际问题。

  教学过程:

  一、创设情景激趣揭题

  1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

  2.引入并板书课题。

  二、扶放结合探究新知

  1.根据这些数学信息,你能提出哪些数学问题?

  2.引导学生逐一解答提出的问题。

  3.重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

  4.引导观察,找出有什么相同点和不同点?

  三、反馈矫正落实双基

  1.指导完成P29的试一试的1,2题。

  2.你能根据方程

  X×1/5=30

  编一道应用题吗?

  3.请你想一个问题情景,遍一道分数应用题。

  四、小结评价布置预习

  1.引导小结

  通过本节课的学习你有哪些收获?

  2.布置预习

  整理前面所学知识。

  板书设计:

  分数除法(三)

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

  参加活动总人数×2/9=跳绳的人数

  解:设操场有X人参加活动。

分数除法教案 篇2

  教学目标:

  1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2、引导同学通过动手操作、探索分数除以整数的算理,归纳计算方法,并能根据题目特点灵活选用较合适的计算方法。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  4、将计算与生活紧密结合,培养同学的数学应用意识。

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以和小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼*均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)

  引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7*均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7*均分成2份就是把4份*均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7*均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/71/2=2/7

分数除法教案 篇3

  教学目标:

  1、运用所学知识解决一些生活中的实际问题。

  2、加强列方程的思维训练。

  3、培养学生分析问题解决问题的能力。

  教学过程:备注

  活动一:复习与准备

  1、爸爸的体重75千克,小明的体重是爸爸的7/15。

  (1)、小明的体重是多少千克?

  (2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?

  (3)让学生说出数量关系并列式计算

  活动二:出示例1

  1、与复习题比较有什么不同?

  2、要求小明的体重应该知道什么条件?为什么?

  3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?

  4、学生自己列式计算

  5、与复习题比较有什么相同点和不同点?你发现了什么?

  小结:(略)

  1、要求学生自己做第二问

  (1)、要求画图分析

  (2)、与第一问比有什么不同?

  (3)、根据什么等量关系列方程?

  小结:

  活动三:巩固练习

  1、38页做一做

  2、40页1、2

  板书设计

分数除法教案 篇4

  分数除法一(分数除以整数)

  教学目标和要求

  1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2, 探索并掌握分数除以整数的计算方法,并能正确计算。

  3, 能够运用分数除以整数解决简单的实际问题。

  教学重点

  分数除以整数的计算方法。

  教学难点

  分数除以整数的计算方法

  教学准备

  教学时数

  1课时

  教学过程

  一, 涂一涂,算一算

  1, 把一张纸的4/7*均分成2份,每份是这张纸的几分之几?

  2, 把一张纸的4/7*均分成3份,每份是这张纸的几分之几?

  (1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

  (2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7*均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的"分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

  二, 填一填,想一想

  1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

  2, 师导学生根据前面的三个活动,总结算法。3,

  3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

  三, 试一试

  练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

  四, 练一练

  1,第26页第2,3题,让学生独立解决。

  教学内容(课题)

分数除法教案 篇5

  设计说明

  《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:

  1.注重对算理的探究。

  探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。

  2.突出自主探究的过程。

  《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。

  课前准备

  教师准备 PPT课件

  学生准备 圆形纸片

  教学过程

  第1课时 分数除法(二)(1)

  ⊙创设情境,导入新课

  有4张饼,*均每人得到了2张;还是同样的4张饼,*均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?

  设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。

  ⊙合作交流,探究新知

  1.初步探究计算方法。

  (1)课件出示教材57页上面例题。

  (2)组织学生独立完成前两个小题,明确数量关系。

  学生独立完成后汇报

  每2张一份,可分成几份?4÷2=2(份)

  每1张一份,可分成几份?4÷1=4(份)

  (3)组织学生讨论后,明确一个数除以分数的计算方法。

  ①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。

  生1:我把每个圆都*均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。

  生2:我把每个圆都*均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。

  ②观察算式,明确计算方法。

  组织学生观察下面两个算式,交流自己的发现。

  4÷=4×2=8 4÷=4×3=12

  小结:一个数除以一个不为零的数,等于乘这个数的倒数。

  设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。

  2.进一步巩固计算方法。

  (1)出示教材57页中间例题的表格。

  (2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。

  (3)组织学生填写表格。

  (4)讨论:从表格“算式”一栏,你发现了什么?

  (一个数除以一个不为零的数,等于乘这个数的倒数)

  3.算一算,巩固计算方法。

  (1)组织学生独立完成教材57页下面例题。

  (2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)

  ⊙巩固练习,提升反馈

  完成教材58页3题,集体订正。

  ⊙课堂总结

  通过本节课的学习,你有哪些收获?

  ⊙布置作业

  教材58页1、2题。

  板书设计

  分数除法(二)(1)

  4÷=8 4÷=12

分数除法教案 篇6

  教学目标:

  使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

  教学重点:

  分析题里所含的数量关系,把哪个数看作单位1。

  教学难点:

  怎样列出方程。

  教学过程:

  一、复习

  列式计算,并口述把哪个数看作单位1。

  (1)的是多少? ( )看作单位1。

  (2)14的是多少? ( )看作单位1。

  (3)1的是多少? ( )看作单位1。

  二、新授

  1、板书课题:列方程解文字题

  2、出示例4:一个数的是,这个数是多少 ?

  (1) 分析数量关系

  提问

  ①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

  ②硬该把哪个数看作单位1?为什么?

  ③单位1所表示的数知道吗?

  ④怎样求单位1所表示的“这个数”?(引导学生用设未知数X的方法来解决)。

  使学生明确:根据一个数乘以分数的意义。

  由已知:一个数的是,得:一个数×=?

  (2) 列方程解文字题。

  第一步,设未知数为X。教师板书

  解:设这个数是X。

  第二步,根据题意列出方程。教师板书

  X×=

  第三步,解这个方程。教师板书:(略)

  第四步,检验:(略)

  第五步:作答

  3、小结

  (1)怎样设求知数?

  要求单位“1”的量,设单位“1”的量为X。

  (2) 样根据题意列方程?

  找出题中数量之间的等量关系。

  三、巩固练习

  1、教科书第35页“做一做”。

  2、一个数的1倍等于2,求这个数。

  四、课堂练习

  练习九第12、16—19题。

  五、作业

  练习九第13—15题。

  六、课外思考

  练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

分数除法教案 篇7

  教学内容

  一个数除以分数

  教材第31、第32页的内容。

  教学目标

  1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。

  2.能够熟练、正确地进行计算。

  3.渗透转化的数学思想。

  重点难点

  重点:理解一个数除以分数的算理,掌握计算方法。

  难点:能够熟练、正确地进行分数除法的计算。

  教具学具

  练习题投影片。

  教学过程

  一导入

  1.口算。

  3.解答应用题。

  投影出示:小明步行2小时走了6千米。他每小时走多少千米?

  学生计算后,说出这道题中的数量关系。

  板书:路程÷时间=速度。

  二教学实施

  揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。

  板书课题:一个数除以分数

  1.出示例2。

  (1)学生读题,明确题意。

  提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)

  (2)列式。

  提问:怎样求小明的速度和小红的速度?

  引导学生利用“速度=路程÷时间”这个关系式列式。

  了2千米”。

  提问:1小时行多少千米,在图上怎样表示?

  小时行了多少千米)

  4.归纳方法。

  老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?

  学生自由发言。

  板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  5.练习。

  (1)完成教材第32页“做一做”的第1、2、3题。

  (2)完成教材第34页练习七的第1~8题。

  学生独立完成,集体订正。

  三课堂作业新设计

  1.在○里填上运算符号,在( )里填上适当的数。

  四思维训练参考答案

  思维训练

  练习七

  板书设计

  3.分数除以分数

  4.甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被

  除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。

  备课参考教材与学情分析

  本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。

  课堂设计说明

  1.借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。

  2.渗透思想,明确结构。

  每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。

推荐访问:除法 教案 分数 《分数除法练习》教案3篇 《分数除法练习》教案1 分数除法应用题例6教学设计