下面是小编为大家整理的沪教版九年级数学下教案3篇,供大家参考。
沪教版九年级数学下教案3篇
九年级数学老师应该让学生在课堂里有充分展示自我的时间与空间,给予学生必须的时间。作为一名九年级数学老师,不妨在课前写一篇九年级数学教案,它对你的工作有许多帮助。你是否在找正准备撰写“沪教版九年级数学下教案”,下面小编收集了相关的素材,供大家写文参考!
配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-21=0
三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业 教材第17页 复习巩固2,3.(1)(2).
二次根式的乘除法
教学目标
1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。
2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式.
3、培养学生合情推理能力。
教学过程
一、复习提问
1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?
2、二次根式有哪些性质?计算下列各题:
()2
二、提出问题,导入新知
1、试一试
计算:
(1) _=( )=( )
=( )=( )
(2) _=( )=( )
=( )=( )
提问:观察以上计算结果,你能发现什么?
2、思考
_与是否相等?
提问:(1)你将用什么方法计算?
(2)通过计算,你发现了什么?是否与前面试一试的结果一样?
3、概括
让学生观察以上计算结果、归纳得出结论:_=(a≥0,b≥0)
注意,a,b必须都是非负数,上式才能成立。
三、举例应用
例1、计算。
__
说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。
等式_=(a≥0,b≥0),也可以写成=_(a≥0,b≥0)
利用它可以进行二次根式的化简,例如:=_==a2
例2、化简
说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。
四、课堂练习
1、计算下列各式,将所得结果化简:
_ _
2、P12页练习1(1)、(2)、2
五、想一想
1、__与是否相等?a、b、c有什么限制?请举一个例子加以说明。
2、等于__ 吗?
3、化简:
六、小结
这节课我们学习了以下知识:
1、二次根式的乘法运算法则,即_= (a≥0,b≥0)
2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a≥0,b≥0)……)
要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么?
3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a≥ 0),加深了对非负数a的算术平方根的性质的认识
七、作业
习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题
圆
经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.
重点
经历形成圆的概念的过程,理解圆及其有关概念.
难点
理解圆的概念的形成过程和圆的集合性定义.
活动1 创设情境,引出课题
1.多媒体展示生活中常见的给我们以圆的形象的物体.
2.提出问题:我们看到的物体给我们什么样的形象?
活动2 动手操作,形成概念
在没有圆规的情况下,让学生用铅笔和细线画一个圆.
教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定?
教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.
1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
2.小组讨论下面的两个问题:
问题1:圆上各点到定点(圆心O)的距离有什么规律?
问题2:到定点的距离等于定长的点又有什么特点?
3.小组代表发言,教师点评总结,形成新概念.
(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.)
活动3 学以致用,巩固概念
1.教材第81页 练习第1题.
2.教材第80页 例1.
多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.
活动4 自学教材,辨析概念
1.自学教材第80页例1后面的内容,判断下列问题正确与否:
(1)直径是弦,弦是直径;半圆是弧,弧是半圆.
(2)圆上任意两点间的线段叫做弧.
(3)在同圆中,半径相等,直径是半径的2倍.
(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)
(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.
2.指出图中所有的弦和弧.
活动5 达标检测,反馈新知
教材第81页 练习第2,3题.
活动6 课堂小结,作业布置
课堂小结
1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.
2.证明几点在同一圆上的方法.
3.集合思想.
作业布置
1.以定点O为圆心,作半径等于2厘米的圆.
2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.
求证:A,B,C,D四个点在以点O为圆心的同一圆上.
答案:1.略;2.证明OA=OB=OC=OD即可.