2023年度考研数学初期备考学习方法,菁选2篇【通用文档】

时间:2023-03-10 15:00:06 公文范文 来源:网友投稿

考研数学初期备考的学习方法1  1、点式学习  数学知识由一系列的基本定义基本定理基本方法组成,这些基本的知识点两两结合,三两结合就能构成不同难度,不同层次的考题,但追根究底,若没有对这些小知识点透下面是小编为大家整理的2023年度考研数学初期备考学习方法,菁选2篇【通用文档】,供大家参考。

2023年度考研数学初期备考学习方法,菁选2篇【通用文档】

考研数学初期备考的学习方法1

  1、点式学习

  数学知识由一系列的基本定义基本定理基本方法组成,这些基本的知识点两两结合,三两结合就能构成不同难度,不同层次的考题,但追根究底,若没有对这些小知识点透彻的学习是不可能漂亮求解复杂问题的。所谓“不积跬步无以至千里”就是道理所在。如何才能深刻理解这些知识点的内涵呢?一般也需要分三步:一、这个点在讲什么?二、这个点揭示了什么?三、这个点如何使用?例如,中值定理里有一个拉格朗日中值定理,从以上三个层次理解就是:一、讲切线与两端点连线的问题;二、揭示了导数与函数的内在关系;三、可以用来沟通函数与导数,出现在不等式证明及中值定理证明题目中。

  2、线式学习

  在掌握好第一步单个知识点的学习后,就好比我们手里有有一把珠子,要想便于携带需要把这些散珠穿起来,这就是线式学习。那么这条穿珠子的线是什么呢?我认为应该是各章节之间的联系。至于如何找到这条线,其实不难,大家手头的教材的编排都是按照一定的逻辑关系进行的,我们只需深刻理解教材的编排方式就可以讲珠子穿起来了。当然,每个人的水*又是不同的,有人理解的深刻,有人理解就浅见一些,不过,只要多下功夫,“读书百遍,其意自现”。

  3、面式学习

  经过线式学习,我们已经把知识做成了一根根线,现在需要把这些线织起来。线与线之间的联系就需要站高一些来看了,各个章节是要解决什么问题,综合起来又是要解决什么问题,这需要较高的抽象综合能力,分析问题的能力。例如,从整体上看高等数学,首先研究函数极限连续,那这是在说明高等数学研究的对象及使用的工具,以极限的手段研究连续函数;后续研究导数及其应用以及中值定理,这是进入一元函数微分学的,一元函数微分学学清楚了后边多元微分的学习就可以轻松进入,对比学习即可;再者就是一元函数积分学的学习,这是整个积分学的基础,后续多元的积分学,包括二重积分、三重积分、曲线面积分从本质上说要想计算出来都要转化成一元函数的积分来处理等等。

考研数学初期备考的学习方法2

  ▶第一:分步得分

  考研数学试卷中的解答题是按步骤给分的。在考研试卷中,80%的题目是考查基础的,所以大部分考生的情况是,题目有思路会做,但是由于当中计算失误,导致最后的答案是错的。或是会做,但是缺少必要关键的步骤,也不能拿满分,这就是我们*时遇见的"会而不对,对而不全"的老大难问题。

  纠正这一错误的做法是:要求考生在答题时,认真书写解题过程,注意表达要准确、逻辑要紧密、书写要规范,防止被扣分。

  ▶第二:缺步答题

  若是遇到一个很困难的问题,实在是不能完全做出来。一个聪明的解题策略是,将它们分解成一个个的小问题,先解决问题的一部分,能解决多少就解决多少,能写多少就写多少,尽量不要空白。尤其是一些解题思路比较固定的题目,若是重要的步骤写出来后,虽然结论没有得出,但是分数却可以拿到一半以上,这确实是一个不错的主意。

  ▶第三:跳步答题

  解题时有思路,但是发现做在一半卡壳了。一般是有两种情况,一是某个知识点或性质忘记了,对于这种情况静下心来捋一下这块的内容,看看会用到哪个知识点。由于考试时间的限制,"卡壳处"的攻克来不及了,那么可以把前面的写下来,再写出"证实某步之后,继续有……"一直做到底,这就是跳步解答。如果后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,"事实上,某步可证明或演算如下",以保持卷面的工整。

  另一种情况是解题思路不对头,此时我们需要改变方向,看看其他路径是否可以解答。有的题目有两到三问,有的题目各问之间没有串联关系,那么会做哪问就做哪问。若是各问之间有关联性,一般前一问是后一问解题中要用到的结论,此时若是我们第一问实在做不出来,我们可以直接做第二问。那样就可以尽我们最大的能力拿分了。

  总之大家临场作答时就是秉着这样的态度:会做的不要错,不会的不要空,会多少写多少,能写多少写多少,不能拿满分就尽量多得分,不能的太多分也要得点步骤分。

推荐访问:学习方法 备考 初期 考研数学初期备考学习方法 菁选2篇 考研数学初期备考的学习方法1 考研数学如何备考 考研数学备考经验 考研数学初期怎么准备