数学百分数应用教学反思1 此次自备展示课,我教学了百分数的应用第一课时,这一例题看上去很简单,好像就是把前面学过的分数用百分数来表示,但是我想:这儿的百分数应用题并不是把“增加(减少)几分之几”改下面是小编为大家整理的数学百分数应用教学反思3篇(范例推荐),供大家参考。
数学百分数应用教学反思1
此次自备展示课,我教学了百分数的应用第一课时,这一例题看上去很简单,好像就是把前面学过的分数用百分数来表示,但是我想:这儿的百分数应用题并不是把“增加(减少)几分之几”改成“增加(减少)百分之几”那么简单,这节课内容还需要结合具体生活情景理解它的真正含义,这对于大多数学生来说是有一定难度的。下面把自己教学后的几点感悟与大家分享。
一、系统复习,突出重点,突破难点。
百分数应用一的主要内容是“求一个数比另一个数增加或减少百分之几”。这一课的难点问题是帮助学生理解“增加或减少百分之几”的意义,如果这一问题能够得到解决,求百分数便是容易多了。而怎样突出重点,突破难点是摆在我面前的大问题,为了很好地完成这节课的教学,根据我班学生的实际情况,我没有采取直奔主题的方法,而是采用了衔接方法,虽然在复习阶段用了将近10分钟的时间,但收到的效果却很好。比如,在让学生用这两个数学信息提出有关百分数应用题时,有复习时的内容铺垫,学生自然就会想到提出“增加(或减少)百分之几”的这样的百分数应用题,学生不会感到突然,解题思路自然就有了方向。
二、借助线段图,找准单位“1”,寻求、理解解题思路。
怎样理解“冰的体积比水的体积增加了百分之几?”这一问题学生容易想到的是书的第一种方法,先求出多的体积,再去除以单位“1”的量。对于第二种方法学生,一是很难想到,二是对“—100%”的理解,就是要把计划的看作1去减,这一点对分数意义理解不深入的学生理解起来可能会一知半解。要想很好理解第二种方法,关键还是要借助前面的线段图,直接用两个量求出冰的体积是水的体积的百分之几,再结合熟悉的思维求多想减,想到用现在的减原来的,结合图想到原来的量是单位“1”,就是100%,继而用减求出问题来。从课堂的实际过程看,在辨析“增加百分之几”是不是也可以说“减少了百分之几”这环节上,学生意见分歧,我并不急于给学生下结论,而是让学生按照例题自己画线段图,独立分析解决。让学生也体会一下这两题在画图中的共同点与细微区别:共同点是都是先画单位“1”量,再画比较量,区别是例题先画的是水的体积,而此次先画的是冰的体积。两次图中所标单位“1”的位置是不同的。这也正是本课的教学难点,图中直观的体现,很大的帮助了更多的学生理解解答的方法。
数学百分数应用教学反思2
这节课,知识点看似简单,就是求“一个数是另一个数的百分之几”,以及求“百分率”。也没有什么很容易出彩的地方,自然提不起学生的兴趣。我采取例举生活中的百分率,学生在这个环节,激情教高达到了一个小小的高潮。回答问题也合情合理,且想法很有创意。突破了重点,难点。
1.要善于挖掘学生的闪光点。
学生在讲到生活中的百分率时,有与自己日常生活相关的正确率、优秀率、出勤率、投篮的命准率、本办期中考试的及格率等。所以我抓住时机指名学生口述教师板书:达标率=达标学生人数÷学生总数×100%;及格率=及格人数÷全班人数×100%;树苗的成活率、发芽率、出勤率……。教师适时进行鼓励,对他们的回答予以有中肯的评价.让学生有一种成就感,进一步激发他们的潜能。
2.发挥学生的主体性,让学生在自主,合作和探究中发展。
教学时就应该从学生的实际出发,尊重学生、相信学生,这样才能充分发挥学生的主体作用。在教学百分率时,我应该采取小组合作探究的方法,小组交流,给予他们充足的时间,说生活中的百分率,说出它们的意义,更好的理解百分率的概念。并且让他们感受生活中的数学知识。知道数学来源于生活,生活中有许多数学知识,以促进他们更好的学习数学。
3.精心设计练习环节,让学生感觉到学数学的"乐趣。
练习这一环节中设计了让学生根据班级同学情况编一道百分数应用题的开放练习,学生的思维非常活跃,学生所提的问题就不再像许多课本上或课外练习书上常看到的“男生占全班的百分之几、女生占全班的百分之几”,有的学生说先调查一下班级中同学们参加兴趣小组的人数,再算一算参加兴趣小组的人数占全班人数的百分之几,有的说统计一下班里有多少同学家中有电脑,算一算有电脑的家庭占全班家庭总数的百分之几,也有的说算一算班中家庭做生意占全班人数的百分之几。确实体现了当数学与生活相结合时,它必将焕发生命的活力,学生也将真正享受数学带来的快乐。
数学百分数应用教学反思3
这一单元,我深知百分数应用题的重要,又感叹它的难教。要想学生真正理解,会熟练解答,非下苦功夫不可。此类应用题涉及的知识面广,题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。我根据自己的教学实践和体会,有以下一些典型方法。
一、“数形”结合思想
数形结合是研究数学问题的重要思想,这里的数形是指画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算。画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
二、对应思想
量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。(量率对应常常和画线段图结合使用。)
三、转化思想
转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。它是把某一个数学问题,通过适当的变化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。复杂的分数应用题,常常含有几个不同的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。
四、变中求定的解题思想
百分数应用题中有许多数量前后发生变化的题型,一个数量的变化,往往引起另一个数量的变化,但总存在着不变量。解题时要善于抓住不变量为单位“1”,问题就会迎刃而解。也就是抓住不变量求变量。
五、假设数字的思想
对于一些抽象的数学题,我们可以假设数字,用数字代入的方法求得其结果。
六、用方程解应用题思想
在用算术方法解应用题时,数量关系比较复杂,特别是逆向思考的应用题,往往棘手,而这些的应用题用列方程解答则简单易行。列方程解应用题一开始就用字母表示未知量,使它与已知量处于同等地位,同时运算,组成等式,然后解答出未知数的值。列方程解应用题的关键是根据题中已知条件找出的等量关系,再根据等量关系列出方程。