小学数学《*行四边形的面积》说课稿1 一、说教材 (一)说教材的地位与作用 《*行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经学习了*行四边形的特征、长方形和正方形下面是小编为大家整理的小学数学《*行四边形面积》说课稿3篇(完整文档),供大家参考。
小学数学《*行四边形的面积》说课稿1
一、说教材
(一)说教材的地位与作用
《*行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经学习了*行四边形的特征、长方形和正方形的面积计算、面积概念和面积单位基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式打下基础。因此,本节课在小学数学学习中起到承上启下的过渡作用。
(二)说教学目标
根据以上对教材的理解与内容的分析,按照新课程标准中掌握4-6学段空间与图形的要求,以及学生所具有的认知结构特征,我将本节课的教学目标定为:
1.知识目标:能应用公式计算*行四边形的面积;
2.能力目标:理解推导*行四边形面积计算公式的过程,培养学生抽象概括的能力。
3.情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
(三)说教学重难点
根据说教材的地位与作用、教学目标以及新课程标准中的教学内容和学生的认知能力,我将本节课的
教学重点定为:能应用公式计算*行四边形的面积。
教学难点定为:理解*行四边形面积的推导过程,并能运用公式解决实际问题。
二、说学情
1.在学习今天的内容之前,学生已经掌握了*行四边形的特征以及长方形与正方形的面积基础之上学习的,有一定的知识积累。
2.五年级的学生求知的欲望和能力,好奇心都有所增强,对新鲜事物开始思考、追求、探索。但是形象思维占主导地位,需要动手操作,理解知识需要具体的实物作支持。
三、说教法、学法
根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:
1.教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学习数学的兴趣和积极思维的动机,引导学生主动地探索。
2.动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把*行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出*行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。
3.满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固*行四边形面积计算方法,提高学生的思维能力。
4.联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。
四、说教学过程
(一)创设情境、激趣导入。
通过创设情境:小兔乐乐想从三快草地中(有正方形、长方形以及*行四边形),找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,请同学们帮助解决。学生利用以前的知识能够计算出其中正方形和长方形草地的面积,不能计算出*行四边形草地的面积。这一环节的设计,不仅复习了旧知识,还体现出数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
(二)主动探究,获取新知。
学生独立思考,动手操作,尝试用不同方法计算*行四边形的面积。根据这些方法,展开其中的割补法,通过转化-找关系-推导这一过程,让学生经历操作、观察、分析、比较、推理、交流,自己根据长方形面积公式概括出*行四边形面积的计算公式。
这一环节的设计,培养了学生思维的灵活性,发挥了学生在课堂教学中的主体作用。
(三)练习应用,巩固提高。
课后练习和一些变式的习题。
紧扣教学内容和教学环节,设计多种形式的数学练习,满足不同层次学生的求知欲,体现因材施教的原则,为学生提供创造性思维的空间。
(四)联系生活,深化应用。
联系生活,解决实际问题。这一环节的设计,让学生感受到数学与生活的密切联系,用学到的知识与解决实际问题,促进理论同实践的结合。
(五)总结:
总结内容主要让学生清楚:要求*行四边形的面积,必须知道它的底和高或量出底和高。
(六)布置作业:
自编一道有关*行四边形面积的应用题。富有实践性和应用性,鼓励学生利用数学知识解决生活中的实际问题。
小学数学《*行四边形的面积》说课稿2
一、内容分析:
九年义务教育六年制小学数学教材关于几何初步知识的安排特点是:从一年级第一册教材起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第八册教材中安排了*行四边形、三角形和梯形的认识,清楚了其特征及底和高的概念。而本册(第九册)教材中"*行四边形的面积",是在学生掌握上述内容的基础上安排的。所以若想使学生理解掌握好*行四边形面积公式,必须以长方形的面积与*行四边形的底和高为基础,运用迁移和同化理论,使*行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外*行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。
二、教学目标:
1、使学生理解并掌握*行四边形面积计算公式,会运用*行四边形的面积公式求*行四边形的面积。
2、发展学生的空间思维能力。
三、教学重难点:
教学重点:
使学生能够运用*行四边形面积公式正确计算出*行四边形面积。
教学难点:
*行四边形面积公式的推导过程。
四、教具学具:
1、用Flash对照教材上的插图制成复合课件为教师的演示教具;
2、剪成一个长为40厘米,宽为30厘米的长方形和底为40厘米,高为30厘米的*行四边形硬纸片为教师演示教具;
3、让每个学生准备一个*行四边形纸片和一把剪刀。
五、教学环节:
根据新课程理念,为突出学生的主体地位和教师的主导地位,我用多媒体课件调动学生的积极性,让学生可以积极的动脑思考、动手操作,从而妥善的将教学目标和教学重点、难点完成好,我安排了以下教学环节。
(一)、复习迁移
由已知到未知,即由旧知识引入新知识,引导学生进行类推,掌握新概念。这是教学抽象的数学知识的一种重要途径。"*行四边形的面积"这一内容,与长方形面积的计算有着密切的联系,适合用这一途径进行教学。
具体做法如下:
1、出示长方形教具:一长方形的长是40厘米,宽是30厘米,面积是多少*方厘米?
2、出示*行四边形纸片,提问:这是什么图形?什么叫*行四边形?谁能指出它的底和高?(底40厘米,高30厘米)
3、比较黑板上长方形与这个*行四边形的面积谁大谁小?
在这里通过第1、2两道题的复习,使学生清楚长方形的面积公式并清楚了*行四边形的概念及底和高的含义,为推导*行四边形的面积公式打下了扎实的基础。通过第3题的练习,产生悬念,引起学生学*行四边形面积公式的动机与欲望,教师由此引出新课。
比较两个图形面积的大小,仅靠肉眼观察是不够的,必须科学地计算出它们的面积才能正确比较。长方形的面积我们会求了,*行四边形的面积怎样计算呢?这节课我们就来研究这个问题。
板书课题:“*行四边形的面积”,进入第二个环节。
(二)、引导发现
在这里,我化抽象为具体,将书中的插图整合到一起制成课件,便于学生观察比较。
首先通过数方格引导学生发现:当长方形的长和宽分别与*行四边形的底和高相等时,它们的面积也相等。
具体做法如下:
1、出示复合Flash课件,从中取出一个小正方形,使学生明确,每一个小方格的边长都是1厘米,面积是1*方厘米。
2、让学生观察图中出示长方形,让学生数一数,长、宽及面积各是多少?
3、在图中出示*行四边形,让学生数一数,它的底、高及面积各是多少?(出现不满一格的都按半格计算)
4、观察数出的数据,你发现了什么?
然后借助长方形的面积公式,引导学生发现*行四边形的面积公式。具体做法如下:
1、引言:用数方格的方法求面积很不方便,因此我们有必要探索出*行四边形面积计算的一般方法,你们有信心完成吗?
2、让学生拿出准备好的*行四边形纸片,从*行四边形的顶点向对边做一条高,然后沿这条高线用剪刀剪开,将剪开后的两部分拼成一个长方形。
3、出示课件“*行四边形到长方形的转化过程,加强学生印象,辅助学生理解,让学生分组观察思考:把剪拼后的长方形与原*行四边形比较。提问:①面积是什么关系?为什么?②长方形的长和宽与*行四边形的底和高是什么关系?为什么?
4、引导学生得出结论:因为长方形的面积=长×宽,所以*行四边形的面积=底×高。(板书)
5、公式用字母表示。这一步骤需要使学生清楚每个字母的含义,并且知道S=a·h也可以写成S=ah。(板书)
6、引导学生运用公式解决实际问题。首先让学生看着*行四边形的面积公式回答:若想求*行四边形的面积,应该知道哪些条件?然后让学生比较新课开始前*行四边形的面积与长方形面积的大小,解除悬念。再让学生独立思考书中的例题,在教师的扶持下,让学生在黑板前和黑板下齐做,教师巡视指导,共同订正。
(三)、巩固深化
根据学生的认知规律,我为学生设计了梯度练习,以对所学内容进行巩固和深化,习题可以根据情况进行增删。
1、求下列*行四边形的面积(单位:cm)(给出几个*行四边形图形)。
2、在两条*行线间画出两个*行四边形试判断甲和乙谁的面积大?谈谈你有什么发现?
3、铺一块底20米,高15米的*行四边形草坪,每*方米草坪售价15元,铺这块草坪总共用多少元?
(四)、课堂总结
我总结的内容主要是让学生清楚:要求*行四边形的面积,必须知道它的底和高或量出底和高。
(五)、板书设计
*行四边形的面积
*行四边形面积=底×高
S=a·h或S=ah
本节课,在教学过程中学生是一个积极的探求者,教师的作用是形成一种学生能够独立探索的情境,而不是提供现成的知识,所以用多媒体辅助教学,可以创设更好的学习情境,实现发现学习。
小学数学《*行四边形的面积》说课稿3
一、说教材
《*行四边形的面积》是小学数学五年级上册第五单元的内容。它是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式奠定良好的基础。因此这节课的内容在整个教材体系中起到了承上启下的作用。
二、说学生
本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解*面图形之间的变换关系,发展空间观念。
三、说教学目标及重难点
根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水*,我确立如下三维教学目标:
1、知识目标:掌握*行四边形面积的计算公式,能正确计算*行四边形的面积。
2、能力目标:理解推导*行四边形面积计算公式的过程,培养学生抽象概括的能力。
3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
教学重点:能应用公式计算*行四边形的面积。
教学难点:理解*行四边形面积的推导过程,并能运用公式解决实际问题。
四、说教学方法
本节课,我将采用“自主探究、合作交流”的教学方式。通过创设情境,课件演示和实践操作,了解求*行四边形的面积与什么有关系,再让学生通过动手剪拼,推导出*行四边形的面积计算公式,直观突破了难点。这样大大激发了学生参与学习的积极性。与此同时,我还组织学生认真操作、观察、分析和讨论,来解决生活中的实际问题。
五、说教具与学具准备
教具:多媒体课件、*行四边形纸、剪刀、三角板。
学具:学生每人一个任意大小的*行四边形纸片剪刀
六、说教学过程
为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,我把教学过程分为以下五个教学环节:
第一环节:创设情境、激趣导入。
通过创设情境:小兔乐乐想从两块草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,同学们能帮助小兔解决吗?接着引导学生看图一是什么图形?该如何计算它的面积呢?学生一边集体回答一边(板书长方形的面积计算公式)然后提问图二是什么图形?该怎么求它的面积呢?学生利用以前的知识不能计算出*行四边形草地的面积。从而激发了学生积极探求知识奥秘的欲望,使课堂教学充满活力。
第二环节:动手实践,多维探究。
1.我首先提出“怎样比较长方形草地和*行四边形草地的面积的大小呢?”这个问题引发学生小组讨论。小组学习中,学生不受任何束缚,开动脑筋,各自想尽一切办法,这样不但达到大家参与,共同提高的学习效果,而且激活了学生的思维,激发了学生的创新意识,培养他们的自主合作、探究的精神。汇报交流时,找准切入点,突破难点。利用从小组汇报中得来的信息,引导学生确定办法的可行性。学生想出了很多办法,如:数方格法、重叠卡片对比法、剪割拼补法等等。不论哪一种方法都是宝贵的,因为,这不是教师强加给他们的,而是学生自己研究讨论的结果,是课堂中生成的收获。引导学生分析、验证是发展学生思维的重要方法。所以,在学生汇报出多种答案时,我组织学生分组实践各种办法,并要求说明实践过程,要合情合理,学生在认真、细致的操作中认识到长方形与*行四边形之间的`联系。
2.其次(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:长方形的长和*行四边形的底相等,长方形的宽和*行四边形的高相等,并得出两个图形面积相同的答案。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导*行四边面积计算公式做好充分的准备。
第三环节:抓住重点环节,深入推导梳理
(1)实验操作
学生小组合作动手操作把*行四边形转化为长方形,并选取小组代表把拼剪的图形张贴在黑板上。学生操作方法如有误,可用课件演示正确方法,使学生学会*移图形的方法。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步探究*行四边形的面积公式积累了感性经验,同时也培养了学生的协作精神。
(2)合作探究
通过感性经验的积累和实践的结果,讨论:
a、是不是任何一个*行四边形都能剪拼成长方形?*行四边形转化成长方形后它的面积有没有变化?
b、拼成长方形的长与原来*行四边形的底有什么关系?
c、拼成长方形的宽与原来*行四边形的高有什么关系?
小组通过讨论达成共识,推导出*行四边形面积公式。
(课件展示板书)*行四边形的面积=底×高
然后指出:如果*行四边形的面积用S表示,底用a表示,高用h表示,那么*行四边形的计算公式还可以写成什么形式,让学生抢答,教师板书,这样又提高了学生用字母表示公式的能力。
小结:整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,推导出*行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。
小学数学《*行四边形的面积》说课稿3篇扩展阅读
小学数学《*行四边形的面积》说课稿3篇(扩展1)
——《*行四边形的面积》 说课稿3篇
《*行四边形的面积》 说课稿1
一、教学目标
(一)知识与技能
让学生经历探索*行四边形面积计算公式的过程,掌握*行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握*行四边形面积计算公式。
教学难点:理解*行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
*行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1.创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的*面图形?
(2)学生汇报交流。
(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,*面图形的大小就是它们的面积。我们已经研究过哪些*面图形的面积?怎样计算?
预设学生回答:长方形的面积=长宽,正方形的面积=边长边长。
(4)引入新课:这幅图中除了有长方形和正方形,还有*行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入多边形的面积的学习。(板书单元课题:多边形的面积)
2.揭示本节课题。
复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那*行四边形的面积怎样计算呢?今天这节课,我们就一起来研究*行四边形的面积。(板书课题:*行四边形的面积)
【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入*行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。
(二)主动探索,推导公式
1.用面积单位测量*行四边形的面积。
(1)提问:要知道这个*行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。
(2)操作:现在把它们放在方格纸上,一个方格代表1m2,不满一格的都按半格计算。*行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)
(3)学生先独立数*行四边形的面积,再互相交流。
预设*行四边形的面积:
方法一:从左往右数,每行6个,有4行,*行四边形的面积是24*方米;
方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24*方米。
长方形的面积:长6米,宽4米,面积是64=24(*方米)。
(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。
(5)填写表格。
①师生共同完成表格:*行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么?
③交流回报,小结:有的同学发现了,这个*行四边形的底与长方形的长相等,*行四边形的高和长方形的宽相等,*行四边形的面积与长方形的面积相等。还有的同学发现,这个*行四边形底乘以高正好等于它的面积,由此猜测*行四边形的面积=底高。
【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为*行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻*行四边形面积的计算方法做准备。
2.操作思考,推导公式。
(1)教师:看来,数方格的确能让我们知道*行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算*行四边形的面积呢?
这个*行四边形的面积恰好等于底高,那是不是所有的*行四边形的面积都等于底高呢?看来,还需进一步研究哦!(PPT课件演示)
(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将*行四边形转化成它们来计算面积呢?请大家借助手中的*行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。
(3)操作转化,推导公式。
①操作转化。
a.学生独立思考,动手剪拼*行四边形,将它转化成长方形后组内交流。
b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着*行四边形的高来剪开?有多少种不同的剪法?为什么?
②观察思考。
a.观察:原来的*行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)
b.思考:*行四边形的底和长方形的( )相等,*行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)
c.学生汇报。(教师板书)
③概括公式。
你能根据长方形的面积计算公式推导出*行四边形的`面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)
(4)回顾与小结。
①我们已经知道*行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?
②教师小结:首先把一个*行四边形沿高剪开后*移拼成一个长方形,再观察原来的*行四边形和拼接后得到的长方形,发现等量关系:*行四边形的底和长方形的长相等,*行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以*行四边形的面积等于底乘高。像这样把未知的*行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。
【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将*行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识沿高剪开后通过*移将*行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第88页例1。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道*行四边形花坛的底是6米,高是4米,求花坛的面积是多少*方米。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求花坛的面积,其实就是求什么?
③归纳:要求花坛的面积,其实就是求底是6米、高是4米的*行四边形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
2.课堂练习。
完成教材第89页练习十九第1题。
(1)学生独立完成。
(2)同桌互相说说自己是怎样做的。
(3)全班集体交流:这个问题你是怎样算的?
【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。
(四)变式练习,内化提高
1.基本练习。
完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择*行四边形中对应的底和高来计算面积。)
参考答案:12cm2;18.72cm2;4.8cm2。
2.提高练习。
完成教材第89页练习十九第4题。(PPT课件演示)
(1)理解题意:怎样计算出这两个*行四边形的面积?需要知道什么?(先测量出*行四边形中对应的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:两个*行四边形的底和高分别是多少?怎样计算面积?
3.拓展延伸。
等底等高的*行四边形的面积一定相等吗?面积相等的*行四边形一定等底等高吗?(PPT课件演示)
【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们主要推导出了*行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了*行四边形的面积;再观察表格中的数据,猜测*行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的*行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的*行四边形与长方形之间的等量关系,从而推导出了*行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量观察猜测转化验证的过程,最后我们还利用公式解决了生活中的实际问题。
(六)作业练习
1.课堂作业:练习十九第5题。
2.课外作业:练习十九第3题。
小学数学《*行四边形的面积》说课稿3篇(扩展2)
——数学《*行四边形的面积》说课稿 (菁选2篇)
数学《*行四边形的面积》说课稿1
一、说教材分析
*行四边形是人教版九年义务教育第九册第五单元多边形面积的计算第一小节的内容。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。*行四边行面积的计算是在学生已经掌握并能灵活运用长方行面积计算公式,理解*行四边行特征的基础上,进行教学的。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等*面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
二、说学生
新课程沐浴下成长的五年级学生,在灵活开放的课堂中,学生们善于独立思考,乐于合作交流,课上表现极为活跃,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力。本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解*面图形之间的变换关系,发展空间观念。
三、说教学目标
根据新课标的要求及教材的特点,以“学生的全面发展”作为标准,从“知识与技能,过程与方法,情感、态度与价值观”三个维度确定如下
教学目标:
知识目标:使学生在理解的基础上掌握*行四边形面积的计算公式,能正确计算*行四边形面积。
能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和*移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
四、说教学重点难点
依据新课程对图形与空间的教学要突出探究性活动的要求,体现《数学课程》的“过程性”目标,同时根据学生已有的知识水*,我确立了本节课教学的重难点。
重点:*行四边形面积计算公式的推导。
难点:使学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系。
五、说教学方式、学习方式及评价方式
教学方式:标准中指出:有效的数学活动不能单纯地靠模仿与记忆,动手操作、自主探索与合作交流是学习数学的重要方式。本节课,采用了情境教学法和引导探究法,组织学生开展丰富多彩的数学活动。在活动中充分调动学生学习的积极性、主动性,为他们创建一个发现、探索的思维空间,使学生更好地去发现、去创造。
学习方式:数学学习活动充满着观察、操作、推理、比较、交流
模拟等探索性与挑战性的活动,本课多次鼓励学生自主探究、合作交流,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务。
评价方式:
1、恰当评价学生的基础知识和基本技能。
2、注重对学生数学学习过程、学习状况、学习态度的评价。
3、重视对学生探究能力、解决问题能力的评价。
4、评价主体多元化,采用自评、互评、师评相结合的方式。
六、说教具学具准备
教具:*行四边形课件、长方形、三角形、梯形
学具:学生每人一个任意大小的*行四边形纸片、剪刀
七、说教学流程
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)结合数学源于生活,激*趣导入
为了跳出陈旧的数学课单纯讲知传道的框架,让学生体会到数学生活的快乐。在新课开始时,我结合自己多年来的教学经验:学好数学的“四个学会”(学会观察,发现问题;学会思考,分析问题;学会讨论,解决问题;学会操作,验证问题。)为导语,激发了学生积极探求知识奥秘的欲望。让学生明白学习数学并不是在学习纯碎的数学知识,而是在解决生活中的实际问题,数学要与生活紧密联系。这样,使学生形成了积极的数学学习情感,使课堂教学充满活力。
(二)动手实践,多维探究
我提出“怎样比较长方形和*行四边形的面积的大小呢?”这个问题引发学生小组讨论。小组学习中,学生不受任何束缚,开动脑筋,各自想尽一切办法,这样不但达到大家参与,共同提高的学习效果,而且激活了学生的思维,激发了学生的创新意识,培养他们的自主合作、探究的精神。汇报交流时,找准切入点,突破难点。
利用从小组汇报中得来的信息,引导学生确定办法的可行性。学生想出了很多办法,如:数方格(学生有计算长方形面积的能力)、剪割拼补法等等。不论哪一种方法都是宝贵的,因为,这不是教师强加给他们的,而是学生自己研究讨论的结果,是课堂中生成的收获。引导学生分析、验证是发展学生思维的重要的方法。
所以,在学生汇报出多种答案时,我组织学生分组实践各种办法,并要求说明实践过程,要合情合理,学生在认真、细致的操作中认知到长方形与*行四边形之间的联系,首先(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:即长方形的长和*行四边形的底相等,长方形的宽和*行四边形的高相等,并得出两个图形面积相同的答案。
这一组实践操作,实际上是组织学生从感性到理性认识长方形的长与*行四边形的底、宽与高相同的内在联系。学生在充足的时间里进行合作探究,他们学习的主动性和学习的潜能得到充分的发挥,学生的个性得到彰显。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导*行四边面积计算公式做好充分的准备。
(三)抓住重点环节,深入推导梳理
学生认知是由浅入深的,通过动手实践,他们已经知道:两个图形面积相等,长方形的长和*行四边形底相等,宽和高也相等。但这三个结论之间并没有在学生思维中产生联系,而这个联系正是本节课的重难点,于是让学生自主操作探索,探究新知
(1)实验操作
学生小组合作动手操作把*行四边形转化为长方形,并选取小组代表把拼剪的图形张贴在黑板上。学生操作方法如有误,可用课件演示正确方法,使学生学会*移图形的方法。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步探究面积公式积累了感性经验,同时也培养了学生的协作精神。
(2)合作探究
通过感性经验的积累和实践的结果,讨论:
a、是不是任何一个*行四边形都能剪拼成长方形?*行四边形转化成长方形后它的面积有没有变化?
b、拼成长方形的长与原来*行四边形的底有什么关系?
c、拼成长方形的宽与原来*行四边形的高有什么关系?小组通过讨论达成共识,推导出*行四边形面积公式。
(课件展示板书)
整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,推导出*行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。
(四)分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化
效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:
1、基础练习:出示填空题、判断题、选择题,巩固*行四边形面积公式推导过程。
2、提升练习:出示例1及生活中的数学题。熟练*行四边形面积计算公式。
3、发散练习:下面*行四边形的面积相等吗?为什么?
此题需要学生综合运用知识,进行逻辑推理,使学生明白等地等高*行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
八、说本课总结
(课件出示)
全课总结时,我让学生自己概括。培养了学生归纳、整理知识的能力。
九、板书设计
(课件出示)
我是以本节课的重难点为标准进行板书设计的。有*行四边形的文字公式、有字母公式,还有字母公式的几种不同的写法。
数学《*行四边形的面积》说课稿2
各位评委,你们好!
我说课的题目是《*行四边形的面积》,我准备从说教材,说教法、学法,说教学过程三个部分完成说课。
一、说教材。
《*行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经掌握了长方形和正方形的面积计算、面积概念和面积单位,以及认识了*行四边形,清楚了其特征及底和高的概念的基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的`面积公式打下基础。为了更好地体现《数学课程标准》的理念,通过学习来解决生活中的实际问题,让学生感受到数学就在身边,人人学有价值的数学。
根据以上对教材的理解与内容的分析,按照新课程标准中掌握4~6学段空间与图形的要求,我将本节课的教学目标定为:
1、知识目标:能应用公式计算*行四边形的面积;
2、能力目标:理解推导*行四边形面积计算公式的过程,培养学生抽象概括的能力。
3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
根据新课程标准中的教学内容和学生的认知能力,我将本节课的教学重点定为:能应用公式计算*行四边形的面积。
教学难点定为:理解*行四边形面积的推导过程,并能运用公式解决实际问题。
二、说教法、学法。
根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:
1、教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学
习数学的兴趣和积极思维的动机,引导学生主动地探索。
2、动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把*行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出*行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。
3、满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固*行四边形面积计算方法,提高学生的思维能力。
4、联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。
三、说教学过程。
第一环节:创设情境、激趣导入。
通过创设情境:小兔乐乐想从三快草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,请同学们帮助解决。学生利用以前的知识能够计算出其中正方形和长方形草地的面积,不能计算出*行四边形草地的面积。
这一环节的设计,不仅复习了旧知识,还体现出数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
第二环节:活动探究,获取新知。
学生独立思考,动手操作,尝试用不同方法计算*行四边形的面积。根据这些方法,展开其中的割补法,通过转化—找关系—推导这一过程,让学生经历操作、观察、分析、比较、推理、交流,自己根据长方形面积公式概括出*行四边形面积的计算公式。
这一环节的设计,培养了学生思维的灵活性,发挥了学生在课堂教学中的主体作用。
第三环节:练习应用,巩固提高。
课后练习和一些变式的习题。
紧扣教学内容和教学环节,设计多种形式的数学练习,满足不同层次学生的求知欲,体现因材施教的原则,为学生提供创造性思维的空间。
第四环节:联系生活,深化应用。
让学生做应用题。
这一环节的设计,让学生感受到数学与生活的密切联系,用学到的知识与解决实际问题,促进理论同实践的结合。
作业:
自编一道有关*行四边形面积的应用题。富有实践性和应用性,鼓励学生利用数学知识解决生活中的实际问题。
总结:
总结内容主要让学生清楚:要求*行四边形的面积,必须知道它的底和高或量出底和高。
板书设计:
小学数学《*行四边形的面积》说课稿3篇(扩展3)
——《*行四边形的面积》 说课稿
《*行四边形的面积》 说课稿1
一、教学目标
(一)知识与技能
让学生经历探索*行四边形面积计算公式的过程,掌握*行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握*行四边形面积计算公式。
教学难点:理解*行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
*行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1.创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的*面图形?
(2)学生汇报交流。
(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,*面图形的大小就是它们的面积。我们已经研究过哪些*面图形的面积?怎样计算?
预设学生回答:长方形的面积=长宽,正方形的面积=边长边长。
(4)引入新课:这幅图中除了有长方形和正方形,还有*行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入多边形的面积的学习。(板书单元课题:多边形的面积)
2.揭示本节课题。
复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那*行四边形的面积怎样计算呢?今天这节课,我们就一起来研究*行四边形的面积。(板书课题:*行四边形的面积)
【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入*行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。
(二)主动探索,推导公式
1.用面积单位测量*行四边形的面积。
(1)提问:要知道这个*行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。
(2)操作:现在把它们放在方格纸上,一个方格代表1m2,不满一格的都按半格计算。*行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)
(3)学生先独立数*行四边形的面积,再互相交流。
预设*行四边形的面积:
方法一:从左往右数,每行6个,有4行,*行四边形的面积是24*方米;
方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24*方米。
长方形的面积:长6米,宽4米,面积是64=24(*方米)。
(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。
(5)填写表格。
①师生共同完成表格:*行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么?
③交流回报,小结:有的同学发现了,这个*行四边形的底与长方形的长相等,*行四边形的高和长方形的宽相等,*行四边形的面积与长方形的面积相等。还有的同学发现,这个*行四边形底乘以高正好等于它的面积,由此猜测*行四边形的面积=底高。
【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为*行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻*行四边形面积的计算方法做准备。
2.操作思考,推导公式。
(1)教师:看来,数方格的确能让我们知道*行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算*行四边形的面积呢?
这个*行四边形的面积恰好等于底高,那是不是所有的*行四边形的面积都等于底高呢?看来,还需进一步研究哦!(PPT课件演示)
(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将*行四边形转化成它们来计算面积呢?请大家借助手中的*行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。
(3)操作转化,推导公式。
①操作转化。
a.学生独立思考,动手剪拼*行四边形,将它转化成长方形后组内交流。
b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着*行四边形的高来剪开?有多少种不同的剪法?为什么?
②观察思考。
a.观察:原来的*行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)
b.思考:*行四边形的底和长方形的( )相等,*行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)
c.学生汇报。(教师板书)
③概括公式。
你能根据长方形的面积计算公式推导出*行四边形的`面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)
(4)回顾与小结。
①我们已经知道*行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?
②教师小结:首先把一个*行四边形沿高剪开后*移拼成一个长方形,再观察原来的*行四边形和拼接后得到的长方形,发现等量关系:*行四边形的底和长方形的长相等,*行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以*行四边形的面积等于底乘高。像这样把未知的*行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。
【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将*行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识沿高剪开后通过*移将*行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第88页例1。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道*行四边形花坛的底是6米,高是4米,求花坛的面积是多少*方米。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求花坛的面积,其实就是求什么?
③归纳:要求花坛的面积,其实就是求底是6米、高是4米的*行四边形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
2.课堂练习。
完成教材第89页练习十九第1题。
(1)学生独立完成。
(2)同桌互相说说自己是怎样做的。
(3)全班集体交流:这个问题你是怎样算的?
【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。
(四)变式练习,内化提高
1.基本练习。
完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择*行四边形中对应的底和高来计算面积。)
参考答案:12cm2;18.72cm2;4.8cm2。
2.提高练习。
完成教材第89页练习十九第4题。(PPT课件演示)
(1)理解题意:怎样计算出这两个*行四边形的面积?需要知道什么?(先测量出*行四边形中对应的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:两个*行四边形的底和高分别是多少?怎样计算面积?
3.拓展延伸。
等底等高的*行四边形的面积一定相等吗?面积相等的*行四边形一定等底等高吗?(PPT课件演示)
【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们主要推导出了*行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了*行四边形的面积;再观察表格中的数据,猜测*行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的*行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的*行四边形与长方形之间的等量关系,从而推导出了*行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量观察猜测转化验证的过程,最后我们还利用公式解决了生活中的实际问题。
(六)作业练习
1.课堂作业:练习十九第5题。
2.课外作业:练习十九第3题。
小学数学《*行四边形的面积》说课稿3篇(扩展4)
——《*行四边形面积的计算》教学反思3篇
《*行四边形面积的计算》教学反思1
1.先让学生回忆学过了哪些*面图形,想一想长方形的面积是怎样求的,做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,渗透了转化的思想方法。
2.注重学生数学思维的发展,设计了剪一剪、拼一拼等学习活动,让学生在活动中探索出*行四边形的面积公式。
3.注重了师生互动、生生互动,这节课始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。师生之间应该互有问答,学生与学生之间也要互有问答。
《*行四边形面积的计算》教学反思2
*行四边形面积的计算是以长方形的面积计算为基础,它为进一步学习三角形的面积,梯形面积的计算打下了基础。我在教学本节课时,采用剪拼的方法,把*行四边形转化为与它相等面积的长方形,从而把新旧知识联系起来,从长方形的面积公式推导出*行四边形的面积公式。
在本节课的教学中,我先复习长方形的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,为下面要学习的*行四边形面积作铺垫。当让学生通过数方格说出*行四边形的面积时,学生很容易数出面积,并且说出它的底和高的长度。我及时抓住这三个量,让学生大胆猜想:*行四边形的底和高与它的面积之间可能存在什么关系呢?这个问题很快激起学生的探究欲望,为下面要探讨的*行四边形面积公式的推导做好铺垫。
为体现学生的主体地位,改变以往的“以教师为中心”的教学方式,在推导*行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,对学习要求中提出的第2、3个问题:转化后的图形与*行四边形有什么关系?你认为*行四边形的面积该怎样求?学生在小组合作中各抒己见,充分阐述自己的理解,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。
在教学完这节课后,听课老师、评课的.领导对本节课进行了评价,从这节课中我看到了自己的不足之处,下面认真进行剖析:
1.课的开始复习内容过长,导致本节课新授知识部分时间不多。练习题与检测题进行的过于仓促,使基础不够好的学生没有充分理解和掌握。复习内容中指出*行四边形的底和高这部分内容可以删去,在新课教学中体现出来。
2.复习部分长方形的面积的两种求法与通过数方格求*行四边形的面积应该同时在课件中显示,进行比较,从而引入新课。
3.教学中某些环节的过渡不恰当。如:长方形的面积学生通过数方格和利用公式求出来了,*行四边形的面积学生通过数方格说出来后,可以说:除了数方格,那么能否像计算长方形的面积那样存在一个面积公式呢?很自然为下面要推导的公式作准备。
4.学习要求的设计不够合理。我提出了两个学习要求:(1)自学课本第65页。(2)小组合作完成三个问题。两个要求要综合起来体现,让学生为了完成所出示的任务,自己通过看书,小组合作交流,边看边操作来完成。
针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。
《*行四边形面积的计算》教学反思3
一、借助游戏,使学生感知转化。
转化在数学学习中是一种非常重要的学习方法和思想,对学习三角形、梯形面积的学习又非常重要的作用。课前游戏环节先用口令形式,进而改为用数字代替口令,让学生在游戏中感知转化、认识转化。既为新知的学习做准备,又调动了学生的积极性,学生乐于参与。
二、联系学生生活,创设情境
结合学生原有的认知水*,通过猜五年(2)班和五年(4)班清洁区的面积创设情境,把生活问题转化为数学问题,通过猜一猜,激发学生的学习兴趣,让学生感受知识来源于生活。
三、运用转化,推导*行四边形面积公式
在学生理解了转化的基础上,提出“能不能把*行四边形转化成我们学过的图形呢?”同时让学生互相讨论,通过剪一剪,拼一拼,转化成自己会算面积的图形。学生通过实际操作,用不同方法把*行四边形转化成了长方形,并通过*行四边形和长方形的内在联系,共同推导出其面积计算公式。
有待加强:
一、整个教学过程我认为没有“放”。作为学生的引导者,教师的这个角色没有充当好。公式的推导过程可以让学生慢慢发现,适当引导即可。我怕完不成教
学任务,就带着学生比较两个图形的特点,得出公式。其实在备课中,我还是准备让学生多讲,通过发现、比较得出公式。不敢放,学生的主体性没得到充分的发挥。
其次,学生通过拼、剪后,示范拼剪过程时,应规范学生的操作过程。如当学生说沿着高剪时,带着学生先作*行四边形的高,使学生明确*行四边形有无数条高,所以沿着*行四边形任意一条高剪开,都可以得到一个长方形。由于是赛讲课,怕出错,因此教程基本按备的课来上,这是由于应变能力较差,有待于多钻研教材,做到备课时也要备学生,对课堂有可能出现的各种情况有正确的估计。
小学数学《*行四边形的面积》说课稿3篇(扩展5)
——《初步认识*行四边形》说课稿3篇
《初步认识*行四边形》说课稿1
【说教材】
一、说课内容:苏教版数学四年级下册第43~45页。
二、教学内容的地位、作用和意义:
这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识*行和相交的基础上,进一步认识*行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步认识*行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的*行四边形,再要求学生根据个人的生活经验举例,充分感知*行四边形;接着让学生做出一个*行四边形并相互交流,初步感受*行四边形的基本特征。在此基础上,抽象出*行四边形的图形让学生认识,引导学生探索发现*行四边形的基本特征。第二个例题认识*行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个*行四边形指定底边上的高及相应的底,进一步感受高与底的意义。
三、说目标
1、知识与技能目标
(1)理解*行四边形的概念及其特征。
(2)认识*行四边形的底和高,会画高。
(3)培养学生实践能力,观察能力、分析能力。
2、过程与方法目标
让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个*行四边形,会在方格纸上画*行四边形,能正确判断一个*面图形是不是*行四边形,能测量或画出*行四边形的高。
3、情感态度与价值观目标
让学生感受图形与生活的密切联系,感受*面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。
四、教学重点、难点:
教学重点:是认识*行四边形;利用材料做*行四边形并发现其特征;能测量或画出*行四边形的高。
教学难点:是学生在做*行四边形的过程中体会其特征。
五、说教具和学具准备
教具:三角板、*行四边形纸片、长方形活动框、小黑板等。
学具:三角板、*行四边形纸片、量角器。
【说学情】
四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。
【说教法和学法】
这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点
一、联系生活实际进行教学
“数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找*行四边形,再寻找生活中的*行四边形。最后举例说明*行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。
二、让学生在活动中探究
心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做*行四边形、相互交流,从中感受*行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同*面图形之间的联系。
三、独立思考与合作交流
本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。
【说教学程序】
一、创设情境 导入新课
1、介绍七巧板
师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?
一千多年前,*人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“*魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。
2、导入:今天就让我们一起来认识其中的一个图形—*行四边形。(出示课题)
【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】
二、尝试探索 建立模型
(一)认一认 形成表象
师:老师这儿的图形就是*行四边形。改变方向后问:它还是*行四边形吗?
不管*行四边形的方向怎样变化,它都是一个*行四边形。(图贴在黑板上)
(二)找一找 感知特征
1、在例题图中找*行四边形
师:老师这有几幅图,你能在这上面找到*行四边形吗?
2、寻找生活中的*行四边形
师:其实在我们周围也有*行四边形,你在哪些地方见过*行四边形?(可相机出示:活动衣架)
(三)做一做 探究特征
1、刚才我们在生活中找到了一些*行四边形,现在你能利用手边的材料做出一个*行四边形吗?
2、在小组里交流你是怎么做的并选代表在班级里汇报。
3、刚才同学们成功的做出了一个*行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)
4、全班交流,师小结*行四边形的特征。(两组对边分别*行并且相等;对角相等;内角和是360度。)
【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认*行四边形、找*行四边形和做*行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了*行四边形的特征。】
(四)练一练 巩固表象
完成想想做做第1、2题
(五)画一画 认识高、底
1、出示例题,你能量出*行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?
2、师:刚才你们画的这条垂直线段就是*行四边形的高。这条对边就是*行四边形的底。
3、*行四边形的高和底书上是怎么说的呢?(学生看书)
4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)
5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)
6、画高(想想做做第5题)(提醒学生画上直角标记)
三、动手操作 巩固深化
1、完成想想做做第3、4题
第3题:拼一拼、移一移,说说怎样移的?
第4题引入:木匠张师傅想把一块*行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张*行四边形的纸试一试 。
2、完成想想做做第6题 (课前做好,课上活动。)
(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。
(2)判断:长方形是*行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的*行四边形?(特殊)特殊在哪了?
(3)得出*行四边形的特性
师再捏住*行四边形的对角向里推。看你发现了什么?
师:三角形具有稳定性,通过刚才的动手操作,你觉得*行四边形有什么特性呢?(不稳定性、容易变形)
(4)特性的应用
师:*行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)
【设计意图:】
四、畅谈收获 拓展延伸
1、师:今天这节课你有什么收获吗?
2、用你手中的七巧板拼我们学过的图形。
3、寻找*行四边形容易变形的特性在生活中的应用。
【设计意图:】
扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找*行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。
《初步认识*行四边形》说课稿2
教学目标:
1、学生在联系生活实际和动手操作的过程中认识*行四边形,发现*行四边形的基本特征,认识*行四边形的高。
2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个*行四边形,会在方格纸上画*行四边形,能正确判断一个*面图形是不是*行四边形,能测量或画出*行四边形的高。
3、学生感受图形与生活的联系,感受*面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:进一步认识*行四边形,发现*行四边形的基本特征,会画高。
教学难点:作*行四边形的`高,明白底与高的对应关系。
教学准备:以小组为单位准备小棒、钉子板、直尺、三角板、水彩笔、方格纸、彩纸、剪刀、*行四边形纸等,教学课件
教学过程:
一、游戏导入
1、谈话:游戏猜图形导入。
2、今天这节课我们一起来进一步研究*行四边形。(板书课题:认识*行四边形)
二、联系生活,初步感知。
谈话:看看录像中哪里有*行四边形?(楼梯扶手、电动门、篱笆)
想一想,在我们的生活中,你在哪些物体的表面见过*行四边形?(学生举例)
三、学生探究特点
1、刚才同学们已经能找出生活中的一些*行四边形了,那我们能不能利用身边的一些物品,自己来想办法来制作一个*行四边形呢?
2、教师巡视,并进行一定的辅导。
3、哪个小组派代表上来交流?注意把你的方法展示出来,然后说说这么做的理由,其他小组等他们说完后可以进行补充。
4、刚才我们已经能用多种方法来制作*行四边形,现在请大家在方格纸上独立画一个*行四边形,想想应该怎么画?注意些什么?
5、我们已经能够用不同的方法制作*行四边形,并且能够在方格纸上画一个*行四边形。那么这些大小不同的*行四边形到底有什么共同特点呢?根据你们在制作*行四边形的体会,你们可以猜想一下:*行四边形有哪些特点?
6、学生小组讨论后提问并板书猜想:
对边可能*行;
对边可能相等;
7、那我们能够自己想办法来证明这些猜想是否正确呢?学生分组验证猜想。
8、经过同学们的努力,我们已经自己验证了猜想,现在我们就来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?
9、小组派代表上来交流自己小组的验证方法,其他小组在其完成后进行评价。
最后,教师板书出经过验证特点:【两组对边分别*行并且相等】
10、完成“想想做做1”。学生独立完成后说说理由(课件)
四、教学*行四边形的高、底
1、请学生用手中的*行四边形纸片跟着老师一起操作,师边做边讲折法。然后展开所得折痕就是*行四边形的高。(并且自学课本44页)
2、请学生用笔和三角板画出高并标上。再用同样的方法折几条高,观察高有什特点。然后师生共同小结板书出高与底的定义和特点。
4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个*行四边形的底和高各是多少厘米。
5、想想做做5,先指一指*行四边形的底,再画出这条底边上的高,注意画上直角标记。如果有错误,让学生说说错在哪里。
五、练习提高
1、想想做做2,用2块、4块完全一样的三角尺分别拼成一个*行四边形,在小组里交流是怎样拼的。
2、想想做做3,用七巧板中的3块拼成一个*行四边形。
出示,你能移动其中的一块将它改拼成长方形吗?
3、想想做做4,想把一块*行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张*行四边形纸试一试。
4、想想做做6,用饮料管做成一个长方形,再拉成*行四边形,比一比长方形和*行四边形的相同点和不同点。
六、阅读调查
自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。
七、全课小结
今天我们重点研究了哪种*面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?
小学数学《*行四边形的面积》说课稿3篇(扩展6)
——《*行四边形面积》教学反思总结3篇
《*行四边形面积》教学反思总结1
一、精心创设情境。
心理学研究表明,学习材料与学生的生活经验相联系时,学生对学习最感兴趣,会觉得内容亲切,易于接受和理解。创设情境,将静态的生活资源加工成动态的数学学习资源,让学生感受到熟悉的活动情境蕴含着许多奇妙的数学知识。数学是从现实生活中抽象出来的,生活中处处有数学,把熟悉的生活事例引入数学课堂,使数学内容具有丰富的现实背景。本节课,精心创设情境,沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体,既让学生对数学倍感亲切,又利于学生理解数学,热爱数学,设定恰当的生活情境和利用真实的生活原型展开数学活动,充分体现了数学与现实世界的密切联系,更重要的是,能让学生学习富于真情实感的,能动的,由活力的知识,使学生的情感世界获得实质性的发展,提升。
二、努力营造学习氛围。
为学生营造宽松、民主、和谐的学习氛围,源于教师对学生真挚的爱。在教学中,我关注、激发、保护、帮助、鼓励学生,使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。创设良好的氛围,使每个学生都有展示自我的机会,都敢于发表自己的见解,培养学生善于倾听,善于欣赏他人的良好品质。
三、鼓励学生大胆猜想。
鼓励学生大胆猜想,调动学生的思维,培养学生的创造能力。再教学伊始,就让学生大胆猜测,*行四边形的面积可能怎样计算?由于受长方形,正方形面积计算方法的影响,有学生说是底乘高;也有学生受知识的负迁移,说是邻边相乘。两种猜想思路,两种猜想结果,使学生产生悬念,激发了他们跃跃欲试的情绪。鼓励孩子们大胆猜测,有利于孩子们在今后的学习中愿意把自己的“原始”思维状态表现出来,这是一笔有价值的学习资源。
四、注重让学生动手操作。
苏霍姆林斯基曾说过:“手是意识的培育者,又是智慧的创造着。”操作实践可以让每个孩子既动脑、动眼又动手,调动各种感官参与学习,积累感性认识,深化理性认识。既能够培养学生的操作能力,发展学生的智力,又能培养学生的探索精神和求实的科学态度。在本节课的教学中,让学生思考,讨论,*行四边形的面积可以怎样计算?当学生认为能将*行四边形转化为长方形时,让学生按照自己的设想动手操作使学生的知识,经验智慧充分发挥作用,通过剪拼,然后让学生交流各自的剪拼方法,结果学生想出了三种剪拼的方法,然后引导学生比较转化前后的图形探究出*行四边形的面积计算公式。每个学生通过操作活动,经历知识的“再创造”的过程,获得数学知识,学得主动,让学生在获取知识的过程中获得学习数学的方法,获得探索数学知识的体验,获得多种能力的提高.
五、充分发挥交流的作用。
学生的数学学习过程中,交流是不可或缺的,交流可以帮助学生在非正式的直觉的观念与抽象的数学语言、符号之间建立起联系,交流可以加深学生对数学概念和原理的理解,教学中,我选择适当的时机组织交流,提供具体的情境让学生去表达、倾听,在与他人交流中展示自己的原始策略,了解同伴的学习策略,发展自己的学习策略;在与他人的交流中开阔眼界,丰富自己的知识,完善自己的想法或认识。
《*行四边形面积》教学反思总结2
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《*行四边形的面积》一课的教学中,我通过让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一.注重数学专业思想方法的渗透。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中,先让学生回忆*行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出可以用数方格的方法来求*行四边形的面积。把这两个图形按每个格1*方米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数。”学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有能力的学生向转化的方法靠拢。
二.注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地通过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以*行四边形的面积=底х高。学生掌握了*行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三.分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计了基础练习(算出下面每个*行四边形的面积。);提升练习(量出*行四边形的底和高的长度,并分别算出它们的面积。);
发散练习(下图两个*行四边形的面积相等吗?为什么?在这条*行线之间,还可以画出几种形状不一样而面积相等的*行四边形。)整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。
四.需要改进的地方
本节课的不足之处有:在进行把*行四边形转化为长方形时,书上虽只给出了两种方法,但是实际上有很多不同的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。而且这个环节过后,忘记强调一下,要沿着*行四边形的高剪下,才能*移拼成一个长方形。让学生说的部分还是显得很仓促,自己急于把正确答案给出,这是迫切需要改正的。
教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
《*行四边形面积》教学反思总结3
按昨天学习的体会我在自己班里实践了一下,课堂上收获了惊喜与*淡,现记录如下。
1、准备学习材料,有点小困难。
课前准备,我都会考虑材料尽可能简单,但效益要达到最大化。本节课就给学生准备一个*行四边行,供学生探究用。
在word上画*行四边形时,遇到了困难。底与高都要取厘米数的*行四边形我不知道怎么设置,急中生智,用了一条参考线段就完成了。但邻边就没办法了,结果做出来的邻边长2。3厘米。不过这样的学习材料并不影响学生的研究。
2、尝试也出现三种思路。
课始,我开门见山就让孩子们量出*行四边形的相关数据,计算*行四边形的面积。(边指周长与面积的环节都省了,这个环节有必要吗?)大部分学生能按自己的理解进行测量并计算,十来名学生三分钟的探究不知道如何下手。这是我始料未及的,课前的准备还是不太充分。下次是不是给那些没办法研究的小朋友准备个研究提示?提示该怎么提示才有效?提示会不会影响那些本来有自己研究思路的学生的.思路?或者会不会呈现的`材料不够丰富?……有太多的疑问了。
我的课堂上也出现了三种解决*行四边形的面积的思路。
方法一:求周长。
方法二:底乘邻边;
方法三,底乘高。
讲评时,我先展示求周长的思路,学生一看就知道这是不对的。再出示底乘邻边的方法,安琦说:“因为长方形是特殊的*行四边形,长方形面积是长乘宽,所以*行四边形也是长乘宽”。居然与案例呈现的孩子回答的一模一样,难道这是孩子们应然出现的思路吗?当我出示教具把*行四边形拉成长方形时,绝大多数的孩子都赞同了这种方法。“把*行四边形拉成长方形,面积没变化吗?”我急着抛出研究的关键点。连续问了三遍,等了一分钟,终于有人举手了。侠宋上台把原来的*行四边形进行害虫补成长方形,跟拉成的长方形一比较,孩子们这才发现,把*行四边形拉成长方形,面积变大了。第三种方法的得出极其自然。真佩服名师,这个环节的设计,割补法应然而出,不过既是为了验证“拉”的方法的不正确,又为正确方法埋了伏笔,高!
3、基本练习。
我采用了两道题,一道只呈现对应底和高的*行四边形,一道有多余邻边的*行四边形,结果还是有人掉进陷阱。是不是太早出现干扰因素了?如果第二课时再出现这个,会不会好一点儿?
4、变式练习。
画面积是12*方厘米的*行四边形,孩子们觉得有些简单。怎样把这个环节设计精彩,成为本堂课的第二个高潮点?有待下次继续思考。
5、课尾。
我也采用了朱老师的那三道题,“一个底是8米,高是6分米的*行四边形,面积是多少?”“把它分成两个大小一样的三角形,一个三角形的面积是多少?”“把它分成两个大小一样的梯形,一个梯形的面积是多少?”就让学生答吧,处理有些简单,继续深入,会不会扯得太多?学生一开始力挺的底乘邻边的方法,是不是在这时给个回就比较好?
遗憾与惊喜并存,上课,真有意思!
小学数学《*行四边形的面积》说课稿3篇(扩展7)
——《*行四边形面积的计算》数学教学反思3篇
《*行四边形面积的计算》数学教学反思1
一、借助游戏,使学生感知转化。
转化在数学学习中是一种非常重要的学习方法和思想,对学习三角形、梯形面积的学习又非常重要的作用。课前游戏环节先用口令形式,进而改为用数字代替口令,让学生在游戏中感知转化、认识转化。既为新知的学习做准备,又调动了学生的积极性,学生乐于参与。
二、联系学生生活,创设情境
结合学生原有的认知水*,通过猜五年(2)班和五年(4)班清洁区的面积创设情境,把生活问题转化为数学问题,通过猜一猜,激发学生的学习兴趣,让学生感受知识来源于生活。
三、运用转化,推导*行四边形面积公式
在学生理解了转化的基础上,提出“能不能把*行四边形转化成我们学过的图形呢?”同时让学生互相讨论,通过剪一剪,拼一拼,转化成自己会算面积的图形。学生通过实际操作,用不同方法把*行四边形转化成了长方形,并通过*行四边形和长方形的内在联系,共同推导出其面积计算公式。
有待加强:
一、整个教学过程我认为没有“放”。作为学生的引导者,教师的这个角色没有充当好。公式的推导过程可以让学生慢慢发现,适当引导即可。我怕完不成教学任务,就带着学生比较两个图形的特点,得出公式。其实在备课中,我还是准备让学生多讲,通过发现、比较得出公式。不敢放,学生的主体性没得到充分的发挥。
其次,学生通过拼、剪后,示范拼剪过程时,应规范学生的操作过程。如当学生说沿着高剪时,带着学生先作*行四边形的高,使学生明确*行四边形有无数条高,所以沿着*行四边形任意一条高剪开,都可以得到一个长方形。由于是赛讲课,怕出错,因此教程基本按备的课来上,这是由于应变能力较差,有待于多钻研教材,做到备课时也要备学生,对课堂有可能出现的各种情况有正确的估计。
《*行四边形面积的计算》数学教学反思2
教学“*行四边形面积的计算”时,一向发踊跃的潘晓迫不及待发说:“*行四边形的面积就是用相邻的两条边相乘。”也有学生大声反驳:“不对,是底乘高。”我没有顺势评判他们的正误,而是让潘说想法。“长方形、正方形都是特殊的*行四边形,长方形和正方形的面积是长乘宽,是相邻的两条边相乘,所以*行四边形也可以用相邻的两条边相乘。”我心里不不由地赞叹:多好的逻辑推理!“这位同学你是怎么想的呢?”“我听妈妈说的。”“他们谁说的有理我们不妨研究一下。”
学生开始各自的研究……之后,大家汇报研究结果。
生1:我们画了长方形和*等四边形把它们剪了下来,再把*行四边形拼成了长方形。这样一比,发现长方形的面积大,所以*行四边形面积不能用相邻的两条边相乘。
生2拼成一个长方形,数这个长方形占的方格数就行了。这个长方形的宽和长分别是*行四边形的高和底。
生3:我们画了一个*等四边形,和它的高,顺着高剪下一个三角形,把*行四边形重新拼成了一个长方形。新拼成的长方形的长和宽就是*行四边形的底和高,长方形的面积用长乘宽,*行四边形的面积应该用底乘高。
我们再来看看潘的表现:她拿着一个*行四边形学具走到讲台前:“我开始的想法是错误的,请大家看—”说着,她捏住*行四边形的一组对角,向两边拉,“*行四边形相邻的.两条边的长度没变,可是它的面积变小了,所以不能用相邻的两条边相乘来计算*行四边形的面积。我还发现,*行四边形的面积变了,高也就变了,所以面积一定和高有关。”
有时,我们为了保证课堂教学的顺利进行,往往启发、示范在前,为学生扫除一切障碍,或者对学生的错误置之不理,生怕“吹皱一池春水”。殊不知,一串串微弱的创造火花就在这小心呵护与视而不见中熄灭了。我们不妨让这可爱的错误“激起千层浪”,这正是创造力爆发前的契机,别错过它,相机诱导,让这思维的火花碰撞、绽放。
[思考与对策]:
课堂师生互动过程中出现“非预设生成”的原因是多方面的,但就上述情况,我觉得主要还是老师在教学预设时对学生的学习起点了解不足,只重视应该的状态(学习的逻辑起点),而忽视现实的状态(学习的现实起点),造成教学预设不够充分,以至于对学生非预设的学习生成置若罔闻。如果是这样,就要求教师在今后的教学预设中,加强对学生现实起点的研究,使教学预设更吻合于学生认知能力与学习材料的最佳结合。“非预设生成”虽然会让教师感到有点棘手,但往往也会给师生带来意外的感觉。这种意外往往给学生带来探究的冲动,如果探究活动带来收获,学生就会有积极的情绪表现。因为这种临时探究与被老师预设的探究有完全不同的感受,生命的活力经常在这样的情境中让人感动。
因此,既然这部分学生对于今天学习的知识已经有所认识,我们何不让他们说说你是怎么知道的呢?通过个人的尝试,我发现让学生们展现他们已有的知识状况,这种知识展现对于他们来说是激动人心的。当他们把自己所掌握的知识告诉同学与老师的时候,他们是在享受,享受学习给自己带来的快乐。并且,他们会以极大的热忱,把自己掌握知识的来龙去脉,尽其所能告诉老师和同学,这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。而老师的任务,则是根据学生不同的现实起点,抓住本知识内容的核心问题,以问题的形式要求学生继续研究,给予解决。面对问题,不论是起点高或低的学生,都会争先恐后地加入研究的行列,因为他们愿意享受这种因学习而带来的被重视的快乐。
后六人给我的一个重要的启示是,他们在真正的让学生有实实在在的自主学习的时间,也在配合用多种不同的方式来激发学生自主学习,在培养学生自主学习的方法能力上取得了一定的成绩,自主学习能力的形成不是一日之功。“桥中人,人人有希望,个个须努力,只有拼搏今天,才能拥有灿烂明天。”
《*行四边形面积的计算》数学教学反思3
*行四边形面积的计算是以长方形的面积计算为基础,它为进一步学习三角形的面积,梯形面积的计算打下了基础。我在教学本节课时,采用剪拼的方法,把*行四边形转化为与它相等面积的长方形,从而把新旧知识联系起来,从长方形的面积公式推导出*行四边形的面积公式。
在本节课的教学中,我先复习长方形的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,为下面要学习的*行四边形面积作铺垫。当让学生通过数方格说出*行四边形的面积时,学生很容易数出面积,并且说出它的底和高的长度。我及时抓住这三个量,让学生大胆猜想:*行四边形的底和高与它的面积之间可能存在什么关系呢?这个问题很快激起学生的探究欲望,为下面要探讨的*行四边形面积公式的推导做好铺垫。
为体现学生的主体地位,改变以往的“以教师为中心”的教学方式,在推导*行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,对学习要求中提出的第2、3个问题:转化后的图形与*行四边形有什么关系?你认为*行四边形的面积该怎样求?学生在小组合作中各抒己见,充分阐述自己的理解,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。
在教学完这节课后,听课老师、评课的领导对本节课进行了评价,从这节课中我看到了自己的不足之处,下面认真进行剖析:
1.课的开始复习内容过长,导致本节课新授知识部分时间不多。练习题与检测题进行的过于仓促,使基础不够好的学生没有充分理解和掌握。复习内容中指出*行四边形的底和高这部分内容可以删去,在新课教学中体现出来。
2.复习部分长方形的面积的两种求法与通过数方格求*行四边形的面积应该同时在课件中显示,进行比较,从而引入新课。
3.教学中某些环节的过渡不恰当。如:长方形的面积学生通过数方格和利用公式求出来了,*行四边形的面积学生通过数方格说出来后,可以说:除了数方格,那么能否像计算长方形的面积那样存在一个面积公式呢?很自然为下面要推导的公式作准备。
4.学习要求的设计不够合理。我提出了两个学习要求:(1)自学课本第65页。(2)小组合作完成三个问题。两个要求要综合起来体现,让学生为了完成所出示的任务,自己通过看书,小组合作交流,边看边操作来完成。
针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。
小学数学《*行四边形的面积》说课稿3篇(扩展8)
——初中数学*行四边形说课稿3篇
初中数学*行四边形说课稿1
一、教材分析
(一)教材所处地位和作用
《*行四边形的判定》紧接《*行四边形的性质》一节。纵观整个初中*面几何教材,它是在学生掌握了*行线、三角形及简单图形的*移和旋转等*面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。
(二)教学目标分析
根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准确定本课教学目标为:
知识与技能:
通过探索*行四边形常用的判定条件的过程,掌握*行四边形常用的判定方法.
数学思考:
1、通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生的合情推理能力和动手操作能力及应用数学的意识和能力。
2、使学生掌握证明与举反例是判断一个数学命题是否成立的基本方法。
解决问题:
通过*行四边形判别条件的探索过程,丰富学生从事数学活动的经验与体验,感受感受数学思考过程的条理性及解决问题的策略的多样性,发展学生的实践能力及创新意识。
情感态度与价值观:
培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵.
(三)教学重点难点分析
*行四边形的判定方法涉及*行四边形元素的各方面,同时它又与*行四边形的性质联系,判定一个四边形是否为*行四边形是利用*行四边形性质解决其他问题的基础,所以*行四边形的判定定理是本节的重点.*行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明*行四边形,是本节的难点.因此在例题讲解时,采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.
二、教法学法分析
鉴于教材特点及八年级学生的年龄特点、心理特征和认知水*,在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者。同时借助实物教具进行演示,以增加课堂容量和教学的直观性。
本堂课立足于学生的“学”,要求学生多动手,多观察,让学生经历发现,说明,完善的过程,培养其操作说理、观察归纳的能力。从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体验参与的乐趣,成功的喜悦。
三、教学程序设计
(一)、回顾交流,逆向思索
在复习了*行四边形定义和性质,提出判定*行四边形的方法引导学生探究。
设计意图:从旧知识问题引入新课, 提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望,也为下面探究*行四边形的判定方法打下基础。著名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。
(二)探索方法,发现新知
⒈、提出问题后我安排了如下两组探索题
探索一、将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是*行四边形;你能说出这种方法的道理吗?并与同伴交流。
探索二、若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是*行四边形。你能说出这种方法的道理吗?与同伴交流。
这两个问题,让学生分小组展开讨论,此时课堂上营造一种和谐、热烈的气氛,在小组讨论中教师可鼓励学生用度量、旋转、证三角形全等等多种方方法来证明所得四边形是*行四边形。教师还要指导学生进行总结、归纳、在探索过程中鼓励学生力求寻找多种方法来解决问题,同时还可组织组与组之间的评比,这样也能培养他们的竞争意识。然后由一名学生代表发言,让学生锻炼自己的语言表达能力,让学生的个性得到充分的展示。最后教师和大家一起总结归纳。得出*行四边形的判别方法:
1、两组对边分别*行的四边形是*行四边形;
2、两组对边分别相等的四边形是*行四边形;
3、两条对角线互相*分的四边形是*行四边形。
这一教学活动的设计意图:确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,从个人学习到合作交流。这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案。
(三)范例点击,应用所学:
为了进一步落实教学目标,让学生在学懂学会的基础上融会贯通,我安排了坡度适中,题型多样的系列题组:
例1、◇ABCD的对角线AC,BD交于点O,E、F是AC上的两点,并且AE=CF.求证四边形BFDE是*行四边形.
设计意图:此题作为本课的例题,要求学生不仅找出判定*行四边形的,而且能有条理的写出证明过程,教师要及时查缺补漏,规范解题格式,让学生着重讲清判断的理由,起到及时巩固判别方法的作用。同时也锻炼学生的语言表达能力。
(机动)演练题:在四边形ABCD中,E、F分别是AB、CD的中点,四边形AECF是*行四边形吗?证明你的结论.
设计意图:此题作为本课的机动题,时间允许就在课堂完成。本题要求学生不仅找出*行四边形判定,而且能有条理的写出证明过程,让学生反复认识,学会分析,此题完成后,学生已顺利达到教学目标。
(四)、随堂练习,巩固深化
1.课本P97“练习”1
设计意图:题1的综合性,灵活性比较强,学生能够顺利解决,对培养他们学好数学的信心大有好处。
(五) 布置作业,专题突破
1.课本:P100习题19.14,5,
2.选做 :P100习题19.1 10,12
证明:两组对角分别相等的四边形是*行四边形。
3.预习:探究:还有什么方法可以判定一个四边形是*行四边形?
设计意图:根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”在作业时给出有梯度的练习,以满足不同层次学生学习的需要。而且通过题2的探究,让学生发现*行四边形更多的判定方法。为下节课进一步探究*行四边形的其他判定法方法奠定基础。
(六).评价分析
本节课教学过程中通过问题设置,引发学生学习的兴趣,引导学生主动探索,通过对*行四边形判别方法的讨论发现新知,归纳总结,得出结论。本节内容逻辑性较强,对学生的逻辑思维能力要求较高,学生在说理上存在一定困难是正常的。但在问题讨论、引导发现、巩固训练的过程中,师生的信息交流畅通,反馈评价及时,学生与学生积极交流、讨论、思维活跃,教学活动始终处于教师的期盼控制中。
初中数学*行四边形说课稿 篇2
一、说教材
1、教材简析
*行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了*行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,然后通过实例验证,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
2、教学目标:
(1)引导学生自己推导出*行四边形的面积公式,沟通长方形和*行四边形之间的内在联系。
(2)通过操作,让学生尝试用转化的思想方法解决新的问题。
(3)理解*行四边形的面积与底和高有关,并会运用面积公式求*行四边形的面积。
3、教学重点:*行四边形的面积计算。
4、教学难点:理解*行四边形面积计算公式的推导过程。
二、教法学法
*行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把*行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出*行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。
教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水*。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。
三、教学过程
(一)复习铺垫
教具逐个出示:
1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?
2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?
学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)
3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?
学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)
(二)导入新课
图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)
你能想办法求出这个*行四边形的面积吗?下面我们一起来研究*行四边形的面积计算。出示课题。
(三)引导探究
1、学生独立思考,动手操作,尝试计算*行四边形的面积。
(教师巡视,学生计算1号学具纸片*行四边形的面积)
谁能说一说,这个*行四边形的`面积是多少?你是怎样计算的?学生可能出现不同的答案。
到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)
反馈交流:根据学生的回答教具演示“转化过程”。 演示前先比较两个全等的*行四边形,再将其中一个*行四边形沿着*行四边形的高把图形剪开,将左边的三角形(或直角梯形)拼到右边去,正好是个长方形,量出它的长是7厘米,宽是4厘米,面积是7×4=28*方厘米。
追问:为什么可以这样算?
把*行四边形割补成长方形,图形的什么变了,什么没有变?
比较拼成的长方形的长、宽与原*行四边形的底、高之间的关系。
2、操作实践,验证想法。
是不是所有的*行四边形都能转化成长方形?任意画一个*行四边形或任意取一个学具*行四边形纸片,证明你的想法。(结论:由此看来,对于任何一个*行四边形,要计算它的面积,我们都可以用割补的访求将*行四边形转化成长方形来计算它的面积)
3、观察分析,归纳公式。
那么*行四边形的面积该怎样计算呢?为什么?(学生讨论)
结合回答,教具演示:因为割补的方法把*行四边形转化成长方形,形变面积不变,我们发现,长方形的长相当于*行四边形的底,宽相当于*行四边形的高,所以*行四边形的面积是底乘以高。
板书:长方形的面积=长×宽
*行四边形的面积=底×高
如果用字母S表示*行四边形的面积,a表示它的底,h表示它的高,那么*等四边形面积的字母公式是怎样的?
(四)小结
1、面对“*行四边形的面积”这个新问题,我们利用已有的“求长方形的面积知识”,通过转化的方法,推导出*行四边形的面积公式。
2、现在,你们说说,要求*行四边形的面积,关键是找哪两个条件?
(五)练习
1、计算下面*行四边形的面积。(练后讲评)
2、计算下面*行四边形的面积。
3、有一块*行四边形草地,底18米,高10米。这块草地的面积是多少?
4、口答下面每个*行四边形的面积。
(六)课堂小结
1、这节课,我们学到了什么?有什么体会?
2、同学们的表现好在哪里?
初中数学*行四边形说课稿 篇3
一、 教材分析(板书)
(幻灯片)首先是教材的地位和作用。《*行四边形的性质》是九年制义务教育课本八年级数学下册第十九章第一节内容。纵观整个初中*面几何教材,它是在学生掌握了*行线、三角形及简单图形的*移和旋转等几何知识的基础上学习的。*行四边形及其性质在实际生产和生活中有广泛的应用,它是本节的重点,又是全章的重点。学习它不仅是对已学*行线、三角形等知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用。
其次是教材的编写特点。教材从学生的年龄特征和知识的实际水*出发,让学生用"观察、猜想、操作、验证、归纳"的方法探索*行四边形的性质。这样符合学生的认知规律,同时也培养了学生主动探求知识的精神和思维的条理性。
二、教学目标(板书)(幻灯片)
作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探究、合作创新的意识,使他们会学。因此根据新课标的要求、教材的特点及学生的实际情况,我制定了如下目标:
1)知识目标 理解*行四边形的定义,探究*行四边形的性质;利用*行四边形的性质进行有关的证明和计算,解决简单的实际问题。
(2)能力目标 通过观察、猜想、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,发展学生合理的推理意识,培养其主动探究的习惯。
(3)情感目标 通过*行四边形性质的应用过程,培养学生独立思考的习惯,在数学学习活动中获得成功的体验。进一步认识数学与生活的密切联系,体验数学来源于生活又服务于生活。
三、重点难点 (板书)(幻灯片)
基于以上对教材和教学目标的分析,本着课程标准,在吃透教材的基础上,我得出本节课的重点与难点。我认为本节课的重点是:*行四边形的概念和性质的探究与应用;本节课的难点是:*行四边形性质的探究,即如何添加辅助线将*行四边形问题转化为三角形问题来解决的思想方法的渗透。
四、教法学法(板书)(幻灯片)
在教法方面。结合课程标准的相关理念及八年级学生思维特征,针对本节课的特点,在教学中我主要采用了讲授式教学、合作式教学、探究式教学、自主式教学等教学方法。在教学过程中特别注意创设思维情境,坚持 (学生为主体,教师为主导)的二主方针。并在教学中借助多媒体进行演示,以增加课堂容量和教学的直观性。
在学法指导上,教给学生科学的学习方法,培养良好的学习习惯是最终目的。在本节课的教学中要帮助学生学会运用观察猜想、合作交流、抽象概括、总结归纳等方法来解决问题的方法, 将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法,同时体验到探究的甘苦,领会到成功的喜悦。
五、教学程序
为突出重点、突破难点,达到教学目标,根据学生的认知规律和学习心理,在本节课的教学中我设定教学过程如下:
(一)情境导入
(二)探究新知
(三)跟踪反馈
(四)收获园地
(五)布置作业
(一) 情景导入
图片欣赏—————生活中的四边形。在此引入问题:"这些图片中有你熟悉的图形吗?它们有什么共同特征?"在学生回答后再次提问"怎样的四边形才是*行四边形?"在此我的设计意图是:通过图片欣赏,让学生感受*行四边形及其不稳定性在生活中的应用,激发学生的学习热情。并为导入新课创设了情景。自然的过渡到第二个教学环节:
(二) 探究新知
首先是"探究一" 教师结合图片和学生举例引导学生总结这些图形的共同特征: 两组对边*行。在此明确定义:两组对边互相*行的四边形是*行四边形。探究一的设计意图是:从实例图片中抽象出*行四边形的几何图形,培养学生的抽象思维,在提炼图形的过程中,强化学生对*行四边形定义的理解,让学生感受到数学与我们生活的密切联系。
"探究二"首先是让学生实际动手"画一画",通过各自不同的猜想途径,加强其对*行四边形特征的感性认识,感受动手测量、动脑猜想的乐趣,培养猜想的意识。其次是引导学生通过合作交流,寻找证明的方法。当学生有疑惑时,教师引导:我们目前证明线段、角相等的方法是什么?(学生回答:利用三角形全等来证明)。而图中没有三角形该怎么办?这时教师引导学生得出:需构造辅助线,将四边形问题转化为三角形问题来解决。
"探究三"学生在完成证明后,教师引导学生回答,师生共同归纳得出*行四边形的性质:*行四边形的对边相等;*行四边形的对角相等,邻角互补。探究三的设计意图是:通过交流和引导,明确目前证明线段、角相等的常用方法是证明三角形全等。通过完成证明、验证猜想的正确性,让学生感受到数学的严谨性,数学结论的确定性和证明的必要性。对*行四边形性质的归纳,培养了学生的概括能力,突出了教学的重点。
(三)跟踪反馈
新课标指出"在素质教育的大前提下,及时适量的的巩固与练习仍然是是帮助学生掌握新知提升能力的必要途径"故而,我设计了层次递进的三道巩固例题。教师引导学生审题,学生弄清题意后,师生共同解题,由教师示范解题过程,并重点强调解答中*行四边形性质的几何表述。通过运用*行四边形的性质,学会解决简单的实际问题,培养学生的应用意识。
(四)收获园地 在此,引导学生思考回答:1这节课我们一起探究了哪些问题? 2你的收获是什么?3你还想知道什么?本环节的设计意图是:旨在通过评价反思引导学生概括本节课学习的内容,对知识进行梳理,这样有利于强化学生对知识的理解和记忆,提高学生的分析和小结的能力。
(五)布置作业 在本环节,我将课后作业的布置分为两个层次,一是数学练习即课后习题作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。二是数学思考即写一篇数学日记,让学生将本堂课所获得经验体会写成一篇数学日记,同学相互交流。旨在提高学生对数学来源于生活的认识,唤醒学生亲近数学的热情,帮助学生强化数学知识的记忆,逐步拉近他们观念中数学与生活的联系,激发学生学习数学的兴趣。
下面,请看我的板书设计
六、板书设计
在此,我以直观、系统为主旨,针对本节课的具体内容,设计了重难点突出、简洁明了的课堂板书,配合多媒体的教学方式,最大化的利用教学资源的同时也体现了时代要素在教学中的运用。
七、反思评价
按照"以人为本、以学定教"的教学理念,本节课的重点是如何"引导"学生自主探索、合作交流,使学生在经历数学知识的形成与应用过程中,加深对所学知识的理解,从而突破重难点、达到教学目标。整节课还应做到全程关注每一个学生的学习状态,引导学生学会欣赏自己、欣赏同伴,彼此学习,在共同学习中掌握知识、发展能力。
在教学中应始终坚持"注重数学思想方法的教学,加强数学学习方法的指导,为学生终生学习打下坚实基础"为主旨,同时努力推行"成功教育、快乐教育"的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,提高课堂教学的效率与效果。促使学生主动参与并"卷入"到"做"数学的活动中,从而更加深刻的认识*行四边形的性质。
以上,我仅从说教材、说目标、说教学法、说重难点、说教学程序、说板书及反思评价几个方面上,说明了"教什么"和"怎么教",阐明了"为什么这样教"。以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位委评老师批评指导。
初中数学*行四边形说课稿 篇4
各位老师,评委:
大家好!
我叫xxx,来自夏庄镇袁庄中学.很高兴有机会参加这次教学研讨活动并得到您们的指导。我说课的内容是冀教版版八年级下册第二十二章第一节《*行四边形的性质》下面我从教学背景分析;教学目标设计;教学重点难点;教法学法分析;教学过程;教学评价六个方面对本课的设计进行说明。
一、教学背景分析
(一)教材的地位和作用
1、*行四边形的性质是学习和掌握了《图形的*移与旋转》、《中心对称和中心对称图形》的基础上编排的。*行四边形作为中心对称图形的一个典型范例,对它性质的研究有利于加深对中心对称图形的认识。而用中心对称作为工具,借助图形的旋转变化来研究*行四边形性质,有助于培养学生以动态观点处理静止图形的意识和能力,为以后论证几何的学习打好基础。且为下节*行四边形的识别提供了良好的认知基础。
2、教学内容的选择和处理
本节课所选教学内容是教材中四条性质及例题。
为了遵循学生认知规律的循序渐进性,探究问题的完整性,培养学生的学习能力,发展智力。我采取把*行四边形所有性质集中在一课时中一起研究。
(二)学情分析
学生在小学阶段已对*行四边形有了初步、直观的认识,为*行四边形性质的研究提供了一定的认知基础。八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,从知识结构和知识能力上都有所欠缺。而利用动手操作来实现探究活动,对学生较适宜,而且有一定吸引力,可进一步调动学生强烈的求知欲。
二、教学目标
1、知识与技能
使学生掌握*行四边形的四条性质,并能运用这些性质进行简单计算。
2、过程与方法
让学生体会通过操作,观察,猜想,验证获得数学知识的方法。注意发展学生的分析,归纳能力,提升数学思维品质。
3、情感态度与价值观
注意学生独立探究及合作交流的结合,促进自主学习和合作精神。
三、重点,难点
1、重点:理解并掌握*行四边形的性质。
2、难点:通过探究得到*行四边形的性质。
四、教学方法和教学手段
1、教学方法
采用引导发现和直观演示相结合的方法,并运用多媒体辅助开展教学。
2、教学手段
教学中鼓励学生自主地进行观察、试验、猜测、推理的数学活动,体验*行四边形是中心对称图形,并得出*行四边形性质,使学生在整个过程中形成对数学知识的理解和有效的学习策略。
五、教学过程
(一)温故知新,导入新课
以录像和照片形式展现*行四边形在生活中的应用,伸缩晾衣架,活动铁门等,引导学生回忆起*行四边形相关知识,明确*行四边形的定义,对边,对角,对角线的概念。
教师提出问题:*行四边形具有什么性质呢并板书课题。(教师直接提出问题,提供给学生较大的探究空间,为发现法学习创建情景。)
(二)自主探究,发现性质
组织学生以小组为单位,充分利用手中的工具,通过观察,测量等方法进行大胆猜测,尽可能多的寻找,发现*行四边形的有关性质。
几分钟后,揭示研究结果:
*行四边形对边相等;*行四边形对角相等;*行四边形邻角互补等。
对于学生的结论,不论正确与否,鼓励学生对猜想进行探讨,加以证明,并对错误结论进行调整,得出
性质一:*行四边形对边相等。
性质二:*行四边形对角相等。
此时,教师提问;除了测量方法,还可以用怎样的图形变换?学生在尝试翻折,旋转后,发现图形旋转180度以后重合,于是又有新发现:
性质三:*行四边形对角线互相*分。
质四:*行四边形是中心对称图形,两条对角线交点是对称中心。
(让学生自己独立或以小组形式合作学习探究*行四边形性质后,使学生在亲身体验中获得知识,使学生对知识的发生发展过程有了一个清晰的了解。)
(三)归纳交流,形成概念
以小组为单位,请学生交流*行四边形性质,并用规范语言描述。
请学生总结整个探究的过程:提出问题——试验操作——猜想——验证——归纳总结。若验证后发现不合理,则重新探索,不断往复,形成新知。
(四)性质应用,形成技能
问题一:*行四边形ABCD中,∠A比∠B大40度,AB=8,周长等于24。
从这些信息中你能得到哪些结论
(通过此题,提供了开放的情景,可让学生充分运用已有的性质1,2,加强了对新知识的应用意识。)
问题而:将问题一中"周长等于24"改为"对角线AC,BD交于O,△AOB的周长为24",求AC与BD的和是多少
(此题为课本例题的变形,进一步加强了对*行四边形性质的运用。)
(五)归纳小结,巩固提高
让学生谈谈本节课的收获及在知识获得过程中的体验和感受。
(六)分层作业,发展深化
1、 必做题:课本P62练习1,2, 习题1,2,3
2、选做题:在直角坐标*面内,*行四边形ABCD有三个顶点的坐标分别为(0,0),(5,0),(2,2)。求第四个顶点的坐标。
教学评价
1、本节课贯彻了以教师为主导,以学生为主体的原则。以学生动手操作,独立思考,合作交流贯穿始终。
2、从问题的提出,引导学生观察,动手操作,猜想,验证,归纳,整个过程让学生充分感受到知识的产生和发展过程,促使学生积极思维,主动探索,勇于发现。
3、*行四边形性质的表述不是由教师直接给出,而是在教师指导下由学生归纳,交流,最后达成共识,形成规范的语言描述四条性质,有助于提高学生的概括表达能力。
4、根据学生的个体差异,遵循因材施教的原则,设计分层作业,分必做题和选做题,使不同层次的学生都能通过作业有所收获。
初中数学*行四边形说课稿 篇5
一、说教材
《*行四边形的认识》是人民教育出版社编写的全日制聋校实验教材数学第十册第三单元第四节*行四边形和梯形中的内容,根据聋校数学教学要求和本班学生的实际水*,我把这课分为三课时,今天要说的是第一课时的内容。
二、说目标
《数学课程标准》强调:让学生亲身经历将实物抽象成数学模型,并进行解释与应用的过程,从而使它们真正掌握数学知识与技能,理解数学思想与方法,获得广泛的数学活动经验,为此我根据本单元的教学要求和本课的特点,制定的教学目标为:
知识与技能
(1)*行四边形的概念及其特性,并会画*行四边行的高。
(2)了解*行四边形与其他图形的联系与区别。
能力目标:培养学生判断、抽象概括的能力。
情感目标:使学生感悟到人民的卓越智慧,提高审美意识。
教学重点:掌握*行四边形的意义及特征。
教学难点:
理解*行四边形与长方形、正方形的关系。
三、说教法
为突出数学教学与信息技术的有效整合,能力培养和知识学习有机结合,我主要采用如下教学方法。
1、驱动教学法
2、指导观察法
3、多媒体辅助教学法四、说学法根据"自主发展"数学教学模式,在这部分教学中我运用了如下方法:
1、合作学习法
2、学法训练
四、说教学过程
(一)复习巩固,导入新课
用课件出示:我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确他们是有四条线段围成的基础上概括出:有四条线段围成的图形是四边形。
教师提问:我们学过哪些四边形呢?(正方形,长方形)
(二)提出问题,自主学习
1、理解*行四边形的意义。
首先课件出示一个*行四边形图形;
教师提问:这是什么图形?它有什么特征?
(1)今天我们就来认识*行四边形(板书:四边形、*行)
(2)课件演示*行四边形两组对边分别*行。
(3)抽象概括:根据你们看到的结果,能说说什么叫*行四边形吗?
小组先讨论,让同学们自己用尺验证,说出检验与测量的结果,从而引出*行四边形的确切定义。(板书:两组对边分别*行的四边形叫做*行四边形。)教师强调说明:只要四边形每组对边分别*行就能确定它的两组对边相等,因此*行四边形的定义是"两组对边分别*行的四边形"。
2、*行四边形的特征和特性
(1)课件演示:一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了*行四边形,四个直角变成了锐角和钝角。
(2)动手操作。学生自己动手,把准备好的长方形框拉成*行四边形,并测量两组对边是否还*行。
(3)归纳*行四边形特性。根据刚才的实验、测量,引导学生概括出:*行四边形具有不稳定性。(板书:易变形)
(4)对比三角形具有稳定性,不容易变形。*行四边形与三角形不同,容易变形,也就是具有不稳定性。这种不稳定性在实践中有广泛的应用。你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等。)同学们上网站上搜索看看还有哪些实际例子。
3、学习掌握*行四形的底和高
(1)认识*行四边形的底和高
课件演示:从*行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做*行四边形的高。这条对边叫做*行四边形的底。
教师说明:*行四边形高的画法与三角形高的画法基本相同,都用过直线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在*行四边形内,不要求把高画在底边的延长线上。
4、长方形、正方形和*行四边形的关系
(1)教师利用长方形框,拉动长方形的边,使其变成不同的*行四边形。(还可以把*行四边形变成长方形)引导学生比较:长方形,正方形和*行四边形的异同点。
(2)这三种图形之间的关系可以用集合图来表示: 继续演示课件"*行四边形"出示集合图(三)拓展学习,寓学于乐(四)学习评价,享受成功
初中数学*行四边形说课稿 篇6
一、说教材
四边形是日常生活中常见的一种图形。它与其他众多的几何图形一起构成了多姿多彩的世界。*行四边形作为最基本的几何图形,作为“空间与图形”领域中研究的主要对象,它在实际生产和生活中有着广泛的应用。
本节课的主要内容是*行四边形的概念和性质,*行四边形是一种特殊的四边形,特殊在两组对边分别*行。由于这个特殊性导致它具有一般四边形不具有的特殊性质:这些特殊的性质有助于我们解决许多实际生活中的问题,要利用这些特殊的性质的前题是判定这个四边形是个特殊的四边形,因此研究*行四边形的三个切入点是:定义、性质、判定。
1、教学目标
(一)知识与技能:
1、理解并掌握*行四边形的定义;
2、掌握*行四边形的性质定理1及性质定理2;
3、培养学生综合运用知识的能力
(二)过程与方法经历探索*行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理的能力。
(三)情感态度与价值观培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。
教学重难点
重点:*行四边形的定义,*行四边形对角、对边相等的性质,以及性质的应用.
难点:运用*行四边形的性质进行有关的论证和计算
二、说教法
本节课的内容特点:教学内容来源于生活,要尽量给学生提供一定的探索空间,让学生去发现结论,由学生自己去探索、去归纳总结,此外,学生在小学阶段已对*行四边形有了初步、直观的认识,为*行四边形的研究提供了一定的认知基础,但对其本质属性理解并不深刻,在七年级的学习阶段学生已经掌握了证线段相等或角相等的一般办法,即证全等三角形。初步具有了用几何语言对命题进行推理证明的能力,这为推理*行四边形的性质奠定了基础。
根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。具体的教学方法:观察动手实践自主探索合作交流
三、说学法
教给学生正确科学的学习方法,培养良好的学习习惯,主要指导学生的学习方法有:
1、观察猜想。以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解*行四边形的性质。
2、合作交流。采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。
3、总结归纳。通过例题探索、练习反馈、收获园地,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯。
四、说教学过程
根据本节课的特点我采用以下教学环节来完成教学目标:
教学过程
一、共同回顾:
1.什么样的图形叫四边形?
2.四边形的内角和是多少度?外角和呢?
3.四边形的对角线有多少条?
4.小学学习过哪些特殊的四边形?
二、新课
1、*行四边形的定义:
(1)定义:两组对边分别*行的四边形叫做*行四边形。
(2)几何语言表述∵AB∥CDAD∥BC∴四边形ABCD是*行四边形
(3)定义的双重性具备“两组对边分别*行”的四边形,才是“*行四边形”,反过来,“*行四边形”就一定具有“两组对边分别*行”性质。
(4)*行四边形的表示:用表示,如□ABCD
(5)对边:*行四边形相对的边称为对边,相对的角称为对角.
对边:AB与CD,AD与BC.对角:∠A和∠C,∠B和∠D.
2、探究:*行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别*行外,还有什么特殊的性质呢?
∵四边形ABCD是*行四边形
∴AB∥CD,AD∥BC,
∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A=180°.
结论:*行四边形的对边*行,邻角互补
问:*行四边形的对边之间、对角之间还有什么数量关系?由此你能得到什么结论?
由∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A
你能得出*行四边形的对角之间有何关系?
性质1:*行四边形的对角相等
四边形ABCD中,
∵AB∥CD,AD∥BC,
∴∠A=∠C,∠B=∠D.
*行四边形的对边在位置上*行,在大小上有何关系?如何证明?
(学生猜想,讨论)
已知:如图,在四边形ABCD中,AB∥CD,AD∥BC.
求证:AB=DC,AD=BC
分析:证明边相等,常见的方法是证明两三角形全等,引导学生添加对角线辅助线
证明:连结AC
∵AB∥CD,AD∥BC
∴∠1=∠2,∠3=∠4
在△ABC和△CDA中,
∠1=∠2
AC=CA
∠3=∠4
∴△ABC≌△CDA
∴AB=DC,AD=BC
性质2:*行四边形的对边相等.
强调:连接对角线是一种常见的作辅助线的方法,将四边形的问题转化为三角形解决
三、新知运用
例1.如图:在*行四边形ABCD中,根据已知的边角大小,写出其他边角的大小.
设计意图:纯*行四边形性质的简单运用
例2.已知:如图,ABCD中,BE*分∠ABC交AD于点E.
(1)如果AE=2,求CD的长.
(2)如果∠AEB=40°,求∠C的度数.
设计意图:(1)问综合运用角*分线的性质、*行线的知识、等腰三角形判定以及*行四边形的性质
(2)问综合三角形的内角和定理及*行四边形的性质
四、学生反馈练习
课件
五、课时小结
*行四边形的性质
(1)共性:具有一般四边形的性质
(2)特性:角*行四边形的对角相等,邻角互补
边*行四边形的对边相等,对边*行
*行四边形常见辅助线的添加:连接对角线转化三角形解决
六、课后作业
课本第78页练习第1、2题
小学数学《*行四边形的面积》说课稿3篇(扩展9)
——《*行四边形面积》说课稿 (菁选3篇)
《*行四边形面积》说课稿1
一、教材分析。
这个内容是五年级上册《多边形的面积》的第一课时。发展学生的空间观念,是新课标教材从一至九年级始终贯彻的一个重要内容,是按由易到难梯次渐进的。《*行四边形的面积》在本册教材中占有重要的地位。它的教学是在学生已经掌握并能灵活运用长方形面积计算公式,了解、理解*行四边形特征的基础上进行的。而且这部分知识的学习运用会为学生学习后面的三角形、梯形,圆等*面图形乃至立体图形表面积奠定良好的基础。由此可见,本课的内容在整个教材体系中起到了承上启下的作用。
二、学生分析。
五年级学生在新课程沐浴下成长。在灵活开放的课堂中,他们善于独立思考,乐于合作交流,而且已经掌握了*行四边形的特征和长方形面积的计算方法,这些都为本节课的学习奠定了坚实的基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、确立目标。
根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水*,我们确立如下三维教学目标:
知识与能力目标:通过学生自主探索、动手实践推导出*行四边形面积计算公式,并能利用公式解决生活中的问题。
过程与方法目标:让学生经历*行四边形面积公式的推导过程,通过操作、观察、比较活动,发展学生的空间观念,渗透转化的思想方法。
情感态度与价值观目标:使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。渗透思想品德教育以及环保意识。
四、教学过程设计。
下面我重点说说这节课的教学过程设计。《基础教育课程改革纲要》中所倡导的新教学观明确指出:“教学过程不只是课程传递和执行的过程,更是课程创新与开发的过程。”因此,在这节课我们把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。老师创设了“普罗旺斯小区中的*行四边形”这一个情况,将新知的学习与练习都置于这一生活情景中,通过求车位、花圃的面积和温馨提示牌的涂漆面积,设计图形等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。设计本节课时我们遵循:“以教师为主导,学生为主体”的教学原则,运用把新知转化为已学的知识,用旧知推导出解决新知的方法,确立了如下几个教学环节:
(一)情景引入,激趣导课。
为了跳出陈旧的数学课单纯讲知传道的框架,让学生体会到数学生活的快乐。在新课的开始,我们结合普罗旺斯小区中的停车位进行导入新课,让学生在一个生动的教学中开始探究活动。
先利用课件出示一个长方形的停车位和一个*行四边形的停车位。它们虽然形状不一,但面积相同。然后教师结合情景图渗透思想教育。人们的生活水*提高的同时精神文明也在提高。李明家和张海家都想把面积大的停车位让给对方。这时,教师抛出问题:你有什么办法知道这两个停车位的面积哪个大呢?因为情景图上的停车位贴有瓷砖,学生会用数格子的方法数出每个停车位有多少块瓷砖,再进行比较。接着,再出示一幅*行四边形草坪图。教师提问:这块草坪还能用数格子的方法求它的面积吗?如果不能,那你又有什么办法知道它的面积呢?通过这两个问题揭示课题――*行四边形的面积。
这部分教学通过创设一个学生熟悉的生活情景图,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生的主体作用奠定了基础。让学生体会到学习了*行四边形的面积计算与实际生活的联系,体现数学的实际应用价值。
(二)动手操作,探究新知。
数学课程标准提出:有效的数学学习不能单纯的依靠模仿和记忆,动手操作、自主探索、合作交流是学习数学的有效方式。*行四边形的面积计算怎样探究,从哪开始探究学生有一定的困难。在这个环节的设计中我们采用小组合作的教学法让学生探索*行四边形的面积。学生可以在小组内发表自己的见解,倾听同学的想法,不断调整自己的方案,经历*行四边形面积计算公式的推导过程。提高了他们的数学素养,同时也学会了合作交流。先让学生动手操作,再用课件演示剪拼过程,加深*行四边形转化成长方形过程的理解,最后整理成文字填空形式,推导出公式。
(三)分层训练,理解内化。
本着“重基础,验能力,拓思维”的原则,我们设计了三个层次的练习,为不同的学生提供了各自施展的舞台,同时也体现数学知识的生活化。
第一层:基本练习。利用所学知识计算情景图中停车位的面积,由学生偿试计算,集体订正。再次使学生对公式有一个完整的认识与强化。
第二层:综合练习。通过不同的高引起学生的混淆。在计算中让学生明确计算*行四边形面积时要注意底与高的对应。
做完这里的练习,学生可能已经感到有些疲劳,所以下面穿插两幅美景让学生欣赏。在欣赏的过程又引出更深的练习。给*行四边形的提示牌两面刷油漆,求刷漆的面积。这题的用意是培养学生认真分析题目,充分找出题目中有利条件。
第三层:拓展思维。小小设计师,根据面积设计图形。这是开放性的练习,让学生充分展开想象。意在培养学生的空间想象和解决问题的能力。
(四)课堂总结,巩固新知。
结课之前,教师抛出:今天学习了什么?你有什么收获?紧接着教师个别提问,让学生谈谈自己的收获。最后教师再作小结。目的是使学生对本节课所学的知识有一个系统的认识,培养学生整理知识的能力。
五、说板书。
*行四边形的面积
长方形的面积=长×宽
*行四边形的面积=底×高
这节课的板书是这样设计的,在这个板书中简洁明了的概括这节课的主要内容,通过把*行四边形转化成长方形推导出了计算公式。这三个等号让学生更加明白*行四边形的底和高与转化后的长方形的长和宽的关系,加深对公式来源的理解。
六、预设效果。
这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间。利用学生熟悉的停车位导入,能激发学生的学习兴趣,课堂气氛一定会十分活跃。而重点部分的`教学采取让学生小组合作、动手操作实践,可以使学生互相督促,全员参与,保证了课堂教学效果。教师深入浅出的引导和充满激励的语言,将会给学生不断探究的动力和热情;而层次分明难易适度的练习题,也使新知得到巩固和应用。可以说本课的教学环环相扣,清晰有序,一定会取得令人满意的效果。我的说课到此结束,谢谢各位。
《*行四边形面积》说课稿2
一、教材分析。
*行四边行面积的计算是苏教版第九册第二单元第一课时。这节课的内容是在初步掌握长方形的面积计算及*行四边的基本特征的基础上进行教学的。*行四边的面积是以长方形的面积计算为基础的,把*行四边转化为长方形来计算面积。通过操作、观察、比较使学生理解,并在此基础上掌握*行四边的面积的计算公式,并能正确计算*行四边的面积。这样可以发展学生的空间观念,渗透事物间相互联系、相互转化的辨证观念,培养学生的演绎推理,逻辑思维及解决问题的能力。同时为以后学习三角形、梯形、组合图形的面积计算打下基础。
根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水*,我确立如下教学目标:
1.知识与能力目标:通过学生自主探索、动手实践推导出*行四边形面积计算公式,能正确求*行四边形的面积。
2.过程与方法目标:经历*行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3.情感态度与价值观目标:通过活动,激发学习兴趣,培养探索精神,感受数学知识的奇妙。
基于以上的对教材的认识和理解,我确定如下的教学重点和教学难点:
1.教学重点:理解和掌握*行四边形的面积的计算公式,并能正确地计算*行四边形的面积。
2.教学难点:理解*行四边形面积公式的推导方法及过程。
二、学生分析:
学生已经掌握了*行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、说教法学法。
1.教法。
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。
2.学法。
我坚持以“学生为本”“以学定教”的思想,鼓励学生自己动手操作,自我探索,自我发现,自我发展,成为一个真正的研究者与探索者、建构者。
四、教学设计。
(一)、创设情境,引发思考。
出示活动木框,(长方形)
师:我们学过许多的*面图形,这个图形你认识吗?
问:在拉动的过程中,木框的什么没有发生改变?
(二)、动手操作,实践推理。
(把这两个图形投到边长1厘米的方格纸上)
问:你有办法知道长方形和*行四边形的面积吗?(数格子)
结论:长方形的面积大,而*行四边形的面积比较小,面积是发生了改变的。
大胆猜测。
师:谁来说说长方形的面积计算公式啊?那谁能根据长
方形面积计算的经验,大胆猜测一下,*行四边形的面积有可能跟什么有关系呢?
初步验证。
在方格纸上画出任意的*行四边形,标出高和底,并量出每条边的长度。
师:用数方格的方法,算出自己所画的*行四边形的面积,分析面积与那些数据有关系。
转化后的长方形的面积你会求吗?怎么求?这也就是谁的面积?
师:这个长方形除了面积和*行四边形的面积相等以外,他们之间还有哪些联系呢?(出示,并填写表格,讨论下面的三个问题)
现在你能说出*行四边形的面积应该怎么计算了吗?互相说一说。(介绍字母公式)
4、小结。
师:刚才我们是怎样研究*行四边形的面积的?(把*行四边形转化成长方形来研究的)
把未知的图形转化成学过的图形来解决是我们学习图形面积计算的一个重要的方法,大家学得很棒。要求*行四边形的面积需要知道哪些条件,你会求*行四边形的面积了吗?
(三)、练习巩固。
1.选择合适的条件计算*行四边形的面积。
2.量出合适的条件,再计算面积。
3.在方格纸中画出面积与所给长方形面积相等的*行四边形。
4.你能设计一个面积为16*方厘米的*行四边形吗?
(四)拓展点题。
师:说说你这节课的收获。
《*行四边形面积》说课稿3
一、教材结构与内容简析:
《*行四边形面积的计算》是九年义务教育课程标准实验教材小学数学北师大版第九册第二单元第3节课的内容。三年级时,学生已经理解了面积的意义,掌握了长方形面积计算的方法。四年级时,又认识了*行四边形、三角形和梯形等图形的基本特征。本册教材在此基础之上安排了*行四边形等*面图形的底和高以及面积计算教学,分为两个单元:“图形的面积(一)”主要学习了*行四边形、三角形和梯形的面积计算方法;“图形的面积(二)”则学习组合图形面积的计算及简单的不规则图形面积的估计等知识,因此本单元在几何学习中有着承上启下的作用。
计算*行四边行的面积是在学生已经掌握并能灵活运用长方行面积计算公式,理解*行四边形特征的基础上进行教学的。而且,这部分知识的学习运用会为学生学习后面的几何知识奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
二、教学目标及重难点的确立:
根据新课标的要求及教材的特点,充分考虑到五年级学生的心智水*,并在对教学效果进行全面预测的基础上,我确立如下教学目标。
1、知识与能力目标:理解并掌握*行四边形面积计算公式,能够应用公式解决实际问题。
2、过程与方法目标:让学生在动手操作中,实践探究;在公式推导过程中,发展空间观念及多种感官并用的综合能力。
3、情感态度目标:通过公式推导,向学生渗透事物之间的普遍联系,培养其辩证唯物主义思想;通过解决实际问题,提高学生对生活中处处有数学的认识。
本单元的教学内容是从研究*行四边形的面积开始,再以*行四边形面积的计算为基础,推出三角形、梯形的面积计算方法,这对后续的教学很重要,所以我认为*行四边形面积计算公式的推导及应用是教学的重点。而引导学生运用转化的方法,启发学生探索规律,找出不同图形参数之间的对应关系,对学生的能力要求较高,所以本节课的难点定为使学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系。本节课的关键就在于通过学生的动手操作,获得直观感受,在观察和比较中找到转化前后的图形关系。
三、设计理念和思路:
《数学课程标准》中明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”因此我先创设探索性和开放性的问题情境,激发求知欲望;然后让学生独立思考、自主探索;再以小组合作学习的形式,引导学生建立转化思想,把问题化归到原有的知识体系中,在充分的实践活动中,找到推导*行四边形面积计算公式的方法,解决*行四边形面积如何计算的问题;又应用探索出来的计算公式解决实际生活中的问题;最后回顾学习过程,总结学习方法,再现*行四边形面积计算公式的发现过程,突出教学重、难点。
四、教法:
数学是一门培养和发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性,使他们在求知的学习状态中展示个性。同时,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务,让学生真正成为学习的主人。
本次课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。”本节课我着重引导学生通过动手操作,观察和比较,建立起“新”“旧”图形之间的联系,培养学生应用旧知识解决新问题的能力。这一学习方式的培养,会对后续的学习有很大帮助。
五、教具、学具准备:
多媒体课件、*行四边形纸片、剪刀、直尺。为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。
六、教学程序及设想:
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,特结合本班学习特点,设计如下环节。
(一)、复习铺垫引入探究。
有意义的学习是在建立在学生原有认知基础上的,必要的知识铺垫是搭起新知与旧知的桥梁。课一开始,我利用课件出示两个长方形让学生说出长方形的面积计算公式并计算出面积。紧接着,再出示一个不规则的几何图形让学生快速找到它的面积,并说说是怎样想的。此时,学生会利用所学过的数方格的方法计算出它的面积,因为前几节课的铺垫,学生也会通过观察发现,如果这个不规则图形凸起部分剪下,把它割补到缺口处,就把这个图形转化成了长方形,通过计算长方形的面积即可得到不规则图形的面积。这样的设计,让学生既复习了数方格的方法,又初步渗透了等积,转化的思想,为后面的学习打下了伏笔。
随之,我又运用课件创设情境,出示一块长方形草地与一块*行四边形草地,请学生比较这两块草地面积的大小。此时学生的思维被激活了,教学也就自然进入了第二个环节。
(二)自主探究合作交流。
从学科本身来讲,学科的概念原理体系只有和相应的探究过程及方法结合起来,才能有助于学生形成一个既有肌体又有灵魂的活的知识结构,如果没有多样化的思维过程和认知方式,没有多种观点和碰撞、论争和比较,结论就难以获得。
在学生积极的讨论与探究中,两种方案可能产生:(一)用数方格的方法数一数。(二)用转化割补的方法变一变,把*行四边形转化为长方形。
结合这多种方案,我顺势引导;怎样才能把*行四边形转化为长方形呢?这时学生迫切需要想办法来验证。为给学生创造一个广阔的空间,充分发挥其潜能,鼓励学生大胆尝试,主动探究,我安排了以下教学活动:
(1)想一想:怎样把*行四边形转化为长方形。
(2)议一议:交流思考方法,小组内达成共识。
(3)做一做:通过剪一剪、移一移、拼一拼的方法,将*行四边形“转化”成长方形。
在操作、展示的基础上,学生又开始了更深入的讨论:1、你能发现原来的*行四边形与现在的长方形有什么关系?2、你能根据这些关系得出*行四边形得出*行四边形面积的计算方法吗?
通过探究、思考、讨论,学生会发现:将一个*行四边形通过剪、拼后转化为一个长方形(或是一个正方形),*行四边形的面积等于长方形的面积,长方形的长相当于*行四边形的底,长方形的宽相当于*行四边形的高,因为长方形的面积=长×宽,所以*行四边形的面积=底×高。接着,让学生自学*行四边形面积的字母表示形成,再次加深公式的记忆。
这样,学生在动手中思维,要思维中动手,不仅品尝了探索成功的喜悦,更使学生在理解中掌握了知识,发展了思维。继而解决课一开始的情境问题。
任何技能技巧只有在练习中才能和提高,练习是数学教学中不可缺少的重要组成部分,此时学习进入了第三教学环节:
(三)实践运用拓展思维。
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:
1、基础练习:算出下面每个*行四边形的面积。(图在课件中)
出示的几个图形底和高的数值都很简单,但图形位置各不相同,这样可使学生加深对图形的认识,正确分清*行四边形底和高。
2、提升练习:量出*行四边形的一边底边和它的对应高,并分别算出它们的面积。(图在课件中)
在第一题的基础上,增加了让学生自己动手测量的要求。使这两道题也体现了“重实践”这一理念。
3、拓展练习:下图三个*行四边形的面积相等吗?为什么?在这条*行线之间,还可以画出几种形状不一样而面积相等的*行四边形。(图在课件中)此题需要学生综合运用知识,进行逻辑推理,使学生明白*行四边形的面积只与底和高有关。明确“同底等高的*行四边形面积相等”这一知识点。
接上题再问:当两个*行四边形的面积相等时,他们的底与高是否也相等?此问题提出必定会引起学生的讨论,因为已有了前一单元《找因数》一课的基础,所以这个问题对于学生来说在讨论中就能解决。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入,有效的培养了学生创新意识和解决问题的能力。
(四)总结评价,体验成功。
总结活动,回顾探索新知的过程,同时引导学生反思、交流:“你有什么心得体会或建议与同学们分享?”
通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心。
(五)作业。
要求学生下课后任意选择一个*行四边形的实物测量,并计算出面积。从而总结全课,并将所学知识带入了生活,也为进一步的探索激发了兴趣。
七、板书设计:
我的板书设计简洁明了,突出重点。
*行四边形面积的计算
长方形的面积=长×宽
*行四边形的面积=底×高
S=ah
在整个教学过程中,我把充分调动学生的积极性贯彻始终,着重引导学生自己动手、动脑,自己观察、发现,自己概括、升华,主动参与到知识的探究过程中,掌握学习方法,从而真正体现了学生是学习的主人。
小学数学《*行四边形的面积》说课稿3篇(扩展10)
——*行四边形面积课件 (菁选2篇)
*行四边形面积课件1
一、说教材
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会*行四边形、三角形、梯形面积计算的任务。*行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
(一)教学目标:根据新课标要求及教材特点,充分考虑五年级学生思维水*,确立如下目标:知识与能力:通过自主探索、动手实践推导出*行四边形面积计算公式,能正确求*行四边形的面积。
过程与方法:经历*行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养分析、综合、抽象、概括的能力。
情感态度价值观:感受数学与生活的联系,感受到数学知识的应用价值和探究知识的乐趣。
(二)教学重点:探究并推导*行四边形面积的计算公式,并能正确运用。
教学难点:通过转化,发现长方形和*行四边形之间的联系,从而推导出*行四边形面积计算公式。
关键点:通过实践——理论——实践来突破掌握*行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点*行四边形面积公式的推导。关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出*行四边形等积转化成长方形。
(三)教具、学具准备:多媒体课件
剪刀、4种不同的*行四边形、彩笔。为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。
二、学生分析
学生已经掌握了*行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、设计理念
《数学课程标准》指出:“由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”而《小学生个性与特长发展实验研究》这一课题旨在通过课堂教学这一主渠道激发学生的学习兴趣,张扬学生的个性,形成爱好,使学生掌握学习策略,并最终能够发展特长。因此,整节课我始终坚持构建和谐的课堂,注重营造民主和谐的教学气氛,尊重学生的真想法,关注学生真实的思维世界,整个教学过程师生在*等、民主、和谐中进行真诚的“对话”和“互动”,形成了思想与情感的真正交流,做到了“以人为本”,这样师生彼此形成了一个学习共同体,整个教学过程变成了一种动态的、生动的、发展的富有个性化的创造过程。另外,《数学课程标准》中提出“自主探索”是重要的学习方式,因此我在本节课的设计中,是先让学生明确*行四边形的面积为什么与底和高有关系,再让学生明确到底有什么关系,这样,是在学生自己思维指向性基础上的探索,也就是让学生明确了“我要探索什么,我为什么探索”,避免了人为地提供探索的方向,真正经历了知识形成的过程。这样,学生的自主探索既有利于教学的合理进展,又有利于学生对知识的真正获得,同时还有利于学生思维的发展和创新精神的培养,做到了有效的探索。
四、说教法、学法
教法:1、发展迁移原则:运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
2、学生为主体,教师为主导的教学原则:针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
3、反馈教学法:为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与*行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
学法:学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
五、说教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:整个教学过程大致是这样一个教学流程:
1)通过“你发了哪些图形?你会计算它们的面积吗?”问题,巩固和加深了对已学过的图形的认识。再由解决“两个花坛哪个大?”这个实际的问题,让学生感受到学习数学知识的应用价值。
2)初步感知用数一数的方法求*行四边形的面积的局限性,从而激起学生进一步寻求简单方法求*行四边形的面积。
3)引导学生观察表中的数据,说说你发现了什么?由此你猜想到了什么?让学生大胆猜想。通过细心地观察、交流明确*行四边形的面积=底×高。然后再探索验证:*行四边形的面积=底×高,学生经历着比较、分析、动手操作、观察、合作、交流等一系列数学活动,体验着知识的形成过程,进而推导出*行四边形的面积计算公式,使学生在学会数学知识的同时,理解和经历了“转化”的数学思想方法。
4)进行综合性的练习,使学生体会“学以致用”。
5)最后让学生谈谈在本节课对自己最满意的地方,学生畅所欲言,在轻松愉快的氛围中结束本课。
(一)创设情景,揭示课题
1、比较两个图形的面积。让学生猜一猜。
2、想办法比较两个图形的面积。
3、长方形的面积会计算,*行四边形的面积怎样算。揭示课题。
(二)动手实践,探究归纳
1、尝试把*行四边形剪、拼成长方形
2、学生展示、交流
3、对比、总结、提炼
(三)分层训练,理解内化:本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题。
(四)总结评价,升华提高
师生共谈本节课的收获,引导孩子用转化的方法尝试解决三角形、梯形的面积。
*行四边形面积课件2
一、说教材
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会*行四边形、三角形、梯形面积计算的任务。*行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
(一)教学目标:根据新课标要求及教材特点,充分考虑五年级学生思维水*,确立如下目标:知识与能力:通过自主探索、动手实践推导出*行四边形面积计算公式,能正确求*行四边形的面积。
过程与方法:经历*行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养分析、综合、抽象、概括的能力。
情感态度价值观:感受数学与生活的联系,感受到数学知识的应用价值和探究知识的乐趣。
(二)教学重点:探究并推导*行四边形面积的计算公式,并能正确运用。
教学难点:通过转化,发现长方形和*行四边形之间的联系,从而推导出*行四边形面积计算公式。
关键点:通过实践——理论——实践来突破掌握*行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点*行四边形面积公式的推导。关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出*行四边形等积转化成长方形。
(三)教具、学具准备:多媒体课件
剪刀、4种不同的*行四边形、彩笔。为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。
二、学生分析
学生已经掌握了*行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、设计理念
《数学课程标准》指出:“由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”而《小学生个性与特长发展实验研究》这一课题旨在通过课堂教学这一主渠道激发学生的学习兴趣,张扬学生的个性,形成爱好,使学生掌握学习策略,并最终能够发展特长。因此,整节课我始终坚持构建和谐的课堂,注重营造民主和谐的教学气氛,尊重学生的真想法,关注学生真实的思维世界,整个教学过程师生在*等、民主、和谐中进行真诚的“对话”和“互动”,形成了思想与情感的真正交流,做到了“以人为本”,这样师生彼此形成了一个学习共同体,整个教学过程变成了一种动态的、生动的、发展的富有个性化的创造过程。另外,《数学课程标准》中提出“自主探索”是重要的学习方式,因此我在本节课的设计中,是先让学生明确*行四边形的面积为什么与底和高有关系,再让学生明确到底有什么关系,这样,是在学生自己思维指向性基础上的探索,也就是让学生明确了“我要探索什么,我为什么探索”,避免了人为地提供探索的方向,真正经历了知识形成的过程。这样,学生的自主探索既有利于教学的合理进展,又有利于学生对知识的真正获得,同时还有利于学生思维的发展和创新精神的培养,做到了有效的探索。
四、说教法、学法
教法:1、发展迁移原则:运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
2、学生为主体,教师为主导的教学原则:针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
3、反馈教学法:为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与*行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
学法:学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
五、说教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:整个教学过程大致是这样一个教学流程:
1)通过“你发了哪些图形?你会计算它们的面积吗?”问题,巩固和加深了对已学过的图形的认识。再由解决“两个花坛哪个大?”这个实际的问题,让学生感受到学习数学知识的应用价值。
2)初步感知用数一数的方法求*行四边形的面积的局限性,从而激起学生进一步寻求简单方法求*行四边形的面积。
3)引导学生观察表中的数据,说说你发现了什么?由此你猜想到了什么?让学生大胆猜想。通过细心地观察、交流明确*行四边形的面积=底×高。然后再探索验证:*行四边形的面积=底×高,学生经历着比较、分析、动手操作、观察、合作、交流等一系列数学活动,体验着知识的形成过程,进而推导出*行四边形的面积计算公式,使学生在学会数学知识的同时,理解和经历了“转化”的数学思想方法。
4)进行综合性的练习,使学生体会“学以致用”。
5)最后让学生谈谈在本节课对自己最满意的"地方,学生畅所欲言,在轻松愉快的氛围中结束本课。
(一)创设情景,揭示课题
1、比较两个图形的面积。让学生猜一猜。
2、想办法比较两个图形的面积。
3、长方形的面积会计算,*行四边形的面积怎样算。揭示课题。
(二)动手实践,探究归纳
1、尝试把*行四边形剪、拼成长方形
2、学生展示、交流
3、对比、总结、提炼
(三)分层训练,理解内化:本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题。
(四)总结评价,升华提高
师生共谈本节课的收获,引导孩子用转化的方法尝试解决三角形、梯形的面积。
推荐访问:小学数学 面积 说课稿 小学数学说课稿平行四边形的面积