初中圆知识点1 1、在一个*面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”下面是小编为大家整理的2023年度初中圆知识点3篇(精选文档),供大家参考。
初中圆知识点1
1、在一个*面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”
2、与圆有关的概念
(1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径)
(2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条 弧,每一条弧都叫做半圆)
(3)等圆(半径相等的两个圆叫做等圆)
3、点和圆的位置关系:
如果P是圆所在*面内的一点,d 表示P到圆心的距离,r表示圆的半径,则:
(1)d (2)d=r →圆上 (3)d>r →圆外 4、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。 一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。 5、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的两条弧。 推论:(1)*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧; (2)*分弧的直径,垂直*分弧所对的弦。 6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 7、圆周角定理: 一条弧所对的圆周角等于它所对的 圆心角的一半 。 推论:半圆(或直径)所对的圆周角是 直角,90°圆周角所对的弦是 直径 。 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。 8、弧长及扇形的面积圆锥的侧面积和全面积 (1)弧长公式:lnr 180 nr21lr(2)扇形的面积公式:3602 (3)圆锥的侧面积公式:rl (4)圆锥的表面积公式:rlr 9、圆与圆的位置关系 ①两圆外离 d﹥R+r ②两圆外切 d=R+r ③两圆相交 R-r﹤d﹤R+r(R﹥r) ④两圆内切 d=R-r(R﹥r) ⑤两圆内含 d﹤R-r(R﹥r) 5.1圆 1、定义:圆是到定点的距离等于定长的点的集合 2、点与圆的位置关系: 如果⊙O的半径为r,点P到圆心O的距离为d,那么 点P在圆内,则dr; 点P在圆上,则dr; 点P在圆外,则dr;反之亦成立。 5.2圆的对称性 一、圆是中心对称图形,圆心是它的对称中心。 定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。 圆心角的度数与它所对的弧的度数相等。 二、圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的两条弧。 5.3圆周角 定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角 定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 定理:直径(或半圆)所对的圆周角是直角。90o的圆周角所对的弦是直径。 5.4确定圆的条件 结论:不在同一条直线上的三点确定一个圆 三角形的外接圆(三角形的外心):三角形的外心是三角形中3边垂直*分线的交点,三角形的外心到三角形各顶点的距离相等。 注:直角三角形的外心是斜边的中点,外接圆的半径等于斜边的一半。 5.5直线与圆的位置关系 一、三种位置关系:相交、相切、相离 如果⊙O的半径为r,圆心O到直线l的距离为d,那么 直线l与⊙O相交,则dr; 直线l与⊙O相切,则dr; 直线l与⊙O相离,则dr;反之亦成立。 二、圆的切线的性质及判定 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 两种方法:连半径,证垂直;作垂直,证半径 定理:圆的切线垂直于过切点的半径 三角形的内切圆(三角形的内心):三角形的内心是三角形中3条角*分的交点,三角形的内心到三角形各边的距离相等。 注:求三角形的内切圆的半径通常用面积法,特殊地,直角三角形内切圆的半径=a?b?c(其中c为斜边) 2 切线长定理:从圆外一点引圆的`两条切线,它们的切线长相等,这点和圆心的连线*分两条切线的夹角。 5.6圆与圆的位置关系 五种位置关系:外离、外切、相交、内切、内含 阅读材料:如果两个圆相切,那么切点一定在连心线上相交两圆的连心线垂直*分两圆的公共弦。 5.7正多边形与圆 各边相等、各角也相等的多边形叫做正多边形。 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。 注:与正多边形有关的计算 1、圆心:圆中心一点叫做圆心。用字母“O”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。 2、圆心确定圆的位置,半径确定圆的大小。 3、在同一个圆内,所有的半径都相等,所有的直径都相等。 在同一个圆内,有无数条半径,有无数条直径。 在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r r=2(1)d 4、圆的周长:围成圆的曲线的长度叫做圆的周长。 5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 6、圆的周长公式:C=πd或C=2πr 7、圆的面积:圆所占*面的大小叫圆的面积。 8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2 9、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2 10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是π:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2。 11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。 12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR2-πr2或S=π(R2-r2)。(其中R=r+环的宽度.) 13、环形的周长=外圆周长+内圆周长 14、半圆的周长等于圆的周长的一半加直径。半圆周长公式:C=πd÷2+d或C=πr+2r 15、半圆面积=圆面积÷2公式为:S=πr2÷2 16、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的*方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。 17、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的*方。 例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。 18、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。 19、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几. 20、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。 22、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 23、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。 24、直径所在的直线是圆的对称轴。 今天的内容就介绍到这里了。初中圆知识点2
初中圆知识点3