六年级数学下册教学反思1 著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过下面是小编为大家整理的六年级数学下册教学反思【10篇】(完整),供大家参考。
六年级数学下册教学反思1
著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。教材中只介绍了把圆柱沿着高将侧面展开,得到一个长方形。通过长方形的面积推导出圆柱的侧面积,这是一种普遍的现象,学生容易理解和接受。但为了培养学生的自主学习能力和自主探究的兴趣,我将圆柱侧面积的教学大胆改革,让学生试先准备好各种圆柱形的纸盒,给学生足够的空间让学生自主探索圆柱体的侧面展开情况及侧面积的计算方法。整节课,学生学习积极
性非常高,收到了好的教学效果,也使其自主探究能力和小组合作能力都得到了提高。
反思如下:
一、圆柱的侧面展开图除了长方形,还可能是什么图形?
发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!”“展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说*行四边形,带着种种可能同学们又开始给圆柱穿上一层衣服,然后沿着斜线剪开,结论不用说,*行四边形展现在同学们面前。继续用*行四边形推导侧面积公式,*行四边形的底是圆柱的底面周长,高呢?是不是*行四边形的斜边?经过一番争论之后,得出高需要重新做垂线。
二、展开之后的图形可以怎样还原成圆柱?
数学课要培养学生的思维能力,如果会展开那只是顺向思维,展开后会还原才能培养他们的逆向思维。 “长方形和正方形都有两种还原方法,那*行四边形是否也有两种还原方法?”问题抛出又产生了分歧,很多同学只会按剪开之后的形状还原,再换个方向竖起来就不行了,总是上下各有两个尖角,其实这是学生拿*行四边形的方式有问题,让他们把*行四边形的斜边贴到桌子上再还原,这样就有很多人展开了笑脸。“找窍门,怎样不贴到桌子上也能正确还原?”细心的同学发现只要捏住相邻的两个角就能轻松还原了,一句话——角对角。得到结论:只要是*行四边形一定可以围成圆柱。
通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
实践也使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的*台,
让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
六年级数学下册教学反思2
首先,给学生创设学习情境,三个图形的比较,学生通过仔细观察,发现圆环的特点,(引出圆环)激发了学生的学习兴趣。再通过引导学生主动探究,发现了圆环面积的计算方法。然后通过观察算式的特点引导出另一种方法。
在课堂评价时,我想了很多鼓励学生的话,学生在得到赏心悦目的语言评价中得到自信和兴趣。
本节课我感觉有几个思考的地方:
1、在试一试做完后,我应该马上总结出要求圆环的面积必须知道哪些条件。(两个半径)
2、出现环宽的两个应用题,是否简单,是否要出示。可能直接出示“圆形花园周围铺上一条石子小路,求出小路的面积。”更简单一些。也更形象一些。
3、可以利用学生做的圆环来贯穿下面的练习。首先可以让他们量出他们做的圆环的大小半径和环宽,这样就可以形象地让学生理解环宽的概念。避免了我在练习中涉及环宽的概念而说不清楚的尴尬。然后可以求出圆环的面积,这样学生就通过实际操作,真正理解了圆环的面积计算。达到理想的效果。
4、3.14×(R2—r2)这个公式还是出现比较好,学生可以更清楚地运用这个简单的运算方法。
六年级数学下册教学反思3
六年级的小学数学教学内容很多很杂,而事实上小学数学六年级的总复习,一直让老师很为难,假如一味地将知识重新再现,学得好的同学认为自身都会了不要听,学得不好的同学也没有定心听,老师觉得上复习课很痛苦,该怎样防止枯燥重复,又能体现同学的主体精神呢?我在概念课的复习教学上做了一次小小的尝试。
假如按课的类型分,可以分成计算课、概念课、*面图形课和统计课等,每种课的类型在复习时各有特色。数学的复习过程,其实就是同学的认知结构不时重组,并形成良好的认知结构的过程,从而形成一个知识的网络体系。在此过程中,同学的自主整理和构建知识网络的能力就显得特别重要。毕业班的复习课注重协助同学把分散在各年级、各章节中有关的数学知识上下串联,左右沟通起来。因为“获得的知识假如没有完满的结构把它们联在一起,即是一种多半为被遗忘的知识。”理清知识体系要充沛调动同学的主动性和积极性,要让同学自身动手动脑,教师的作用主要是引导、协助、点拨和补充。
我执教的《比和比例》属于概念课,为了让同学对比和比例的知识形成整体的认识,又能掌握住知识之间的联系和区别,达成举一反三,一举多得,我将比和比例的知识对比复习,深化基本概念。当问同学“关于比和比例我们已经知道了些什么?”时,同学们讲了很多,同时也深深感到这些知识点假如这样处置的话会显得零乱、无序、缺乏系统化,这一环节的处置旨在激发同学“自主萌生出整理知识,梳理结构”的需求,在此基础上以小组为单位展开学习,同学在明确了学习要求之后学习的愿望得到了满足,同学学习方向明确,学习要求具体,认知抵触相对集中,这样同学的兴趣浓厚了,每一位同学有了具体的任务,防止了小组学习只搞形式同学无事可干的尴尬局面。本课从构思到实施已是几易其稿了,我的矛盾在于同学将知识图表化的过程需要较长的一段时间,假如把这一过程放在课堂上的话可能会“浪费”很多时间,但是假如放在课前去完成的话,同学的整理只是把概念抄一抄而已,还是缺乏知识的系统化。
在经过一番思想斗争之后,我决定还是把这个过程放在课堂上去完成,因为一直有一个信念在支撑着我:复习课我该给同学些什么?难道仅仅就是一些题海战术吗?我想应该给同学数学思想和方法,这才是同学一生都受用的。事实上,每一门学科有自身的特点,而同一学科的不同类型的课也各有特色,*面图形和立体图形的复习重在强化转化思想,计算复习课重在计算的战略与实际运用,统计复习课重在经历统计的过程并能对统计结果做出正确的分析,而概念复习课则在于选择合适的方法将相关概念系统化,同学能对之整体掌握,进而形成清晰的认识。
因此我觉得这“浪费”的时间是值得的,同学经过自身的努力而整理出来的知识体系,同学理解得更深刻,记忆得特别牢固,而且能有效地锻炼和培养同学的自学能力。总之,通过列表的方式使学习的知识系统化,也明确了各知识点的共性和个性,表示了同学对知识的理解,更重要的是渗透了同学对各类信息的整合、梳理,培养了科学的学习方法,让同学学会学习。
六年级数学下册教学反思4
1、通过课堂评价促进小组探究学习的有效性
我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动 体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到 过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。
2、层次清楚,步步深入,重点突出
在教学圆锥的体积时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动 手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公 式解决生活中的实际问题,加深学生印象。
3、激发学生的求知欲
新课一开始,我就让学生比较两堆沙的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
4、全体学生的积极参与,突出学生的主体作用
由于我*时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
5、课堂教学后的改进
关于两堆沙的多少的比较课让学生有更多的发展空间,例如从价钱,重量等方面考虑,在这些都不知道的情况下才通过求体积的方法,事实上从价钱上来看更简单一些,要让学生有选择合适的方法解决问题的能力。
在操作活动过程中,指向性过于直接,在第二次教学中我做了一些新的尝试。简单的导入,我出示了一组圆柱和圆锥,先让学生猜一猜学生它们体积的关系,因为学 生都有预习,圆锥体积是圆柱体积的三分之一很快从学生口中脱出。那我们就来做个试验验证一下!我给六个小组分别准备了等底等高、等底不等高、等高 不等底、既不等底也不等高的圆柱和圆锥,当然,实验还没结束,学生中的问题就出来了,我们做的正好是三分之一、怎么回事?我们的是二分之一?, 我们的是四分之一是不是书上写错了?学生思维出现激烈的碰撞,这时我没有评判结果,适时让学生观察、对比、通过合作、讨论,等底等高这一 前提,这样让学生在看似混乱无序的实践中,增加对实验条件的辨别,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展,而不必苦口婆 心地强调等底等高,对三分之一的认识也深入学生之心,圆锥体积计算漏乘三分之一的错误将得到很好的纠正。而这些目标的达成完全是灵活机智地利 用错误这一资源,所产生的效果,这节教学虽没以前那么顺利,但我觉得今天的学生才真正掌握了知识。因为学生更需要经历知识形成的全过程。真正关注学生 学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验, 这样,我们的课堂才是学生成长和体验成功的乐园!
六年级数学下册教学反思5
图形的缩放是学习比例尺的前奏,通过观察、操作,体会比例尺产生的必要性和按相同的比扩大和缩小的实际意义;通过图形的缩放,结合具体情境,感受图形的相似。在教学的过程中,首先创设了一个人人皆知的问题情境————相片,相片上的人或物都比实际照的这个面要小许多,这就是我们要研究的学习内容,一节很有趣的数学课——图形的缩放。激发起学生们的学习激情后,再组织他们研究讨论,他们会全身心的投入其中。然后就自然过渡到图形缩放的方法研究上。
通过引导学生观察、交流、分析、比较教材上安排的两幅主题图,第一幅是一张贺卡,长6厘米,宽4厘米。第二幅图是三个小朋友笑笑、淘气和小斌在方格纸上画的这张贺卡的示意图。围绕这三个小朋友谁画得像,展开讨论,究竟谁画得最像呢?为什么?谁画得不像,理由何在呢?学生们的兴趣很浓,四人小组合作很快就得出了结论:淘气和笑笑画得像,小斌画得不像,并将理由一一阐述,非常清楚。在集体交流中,进一步理清思路,明确图形缩放的意义,使他们渐渐明白了比例尺产生的必要性。这样与现实相结合,不仅生动具体的再现了图形的缩放,而且使学生了解到学习本节课的实际意义及学习本知识点的应用背景。
六年级数学下册教学反思6
今天,我进行了"比例尺"的教学,我是这样进行教学的:
首先,我创设了一个情境,引导学生明白按照实际尺寸绘制*面图是不可能的,初步产生缩小放大的需要,引入了学生对新知学习的渴望,进而,让学生初步了解比例尺在实际生活中有缩小和放大两方面的应用,进而,引入了学习比例尺的必要性,导入新课的学习。
接着,通过学生的自学让学生自己说出了什么是比例尺,我直接给出了比例尺的相关定义,进而,结合例题引出数值比例尺以及它的含义的理解.
然后,引出线段比例尺的学习,紧接着,进行了数值比例尺和线段比例尺的互化教学,进而,引导学生总结出:为了计算简便,通常把比例尺写成前项或后项是1的比. 然后,介绍放大比例尺,同时跟缩小比例尺进行对比,最后,作了相应的练习,对新知进行了巩固与内化,加深了学生对比例尺的掌握.
反思:通过今天的教学,我觉得,这节课学生学的还是比较轻松的:无论从学生学习新知的状态,还是参与程度,都很好的体现了学生的主体性,尤其是一些概念性东西的总结环节,学生学的很主动,而且,比例尺的转化和有关计算是本节课的重点和难点,而理解比例尺的定义是突破这一重点和难点的基础和前提,所以我在教学中对于重点的把握还是可以的,只是在这节课中还有一点遗憾,就是感觉到对于教材的拓展方面还有一些欠缺,所以在这方面还需努力,而且对于一些后进生来说,知识点多,理解起来比较慢,掌握起来还有些难度.所以,学生在计算过程中,教师要不断强调有关注意事项,不断加深学生的印象,让学生形成良好的计算习惯.
六年级数学下册教学反思7
教学了《纳税》这一内容,课后回想起来,这节课有好的地方,也有需要
改进的地方。课开始我在黑板上用红粉笔写了一个大大的“税”字,问同学们:看见这个字你想到了什么
生:想到了开商店要交税、开饭店要交税,工商人员要收税。我又问国家收税有什么意义呢?学生们各抒己见,收税的钱可以办学校、可以修路、可以修洛浦公园、可以给大家安装健身器材,一句话可以建设我们的国家。纳税的导入以及税收的意义这个环节我觉得进行的比较满意。
有一个环节课后想来需要改进。有关计算技巧。
在练习环节,学生计算书上练习三十二第三题时列算式:250000×5%×12,在指导学生进行有关百分数计算时,我告诉学生一般情况下,把百分数化成小数(即:方法一)。此种算法,学生在把百分数化小数,特别是百分数的分子小于10时化小数,非常容易出错。如果改成方法二,计算时把250000缩小100倍,把5%去掉%扩大100倍,结果不变,计算起来也简便多了。
方法一:250000×5%×12
方法二:250000×5%×12
=250000×0.05×12
=2500×5×12
=150000(元)
六年级数学下册教学反思8
比例的应用是学生在前面实际是已经接触过,只是用归一、归总的方法来解答,这部分内容主要是用比例的知识来解答。通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列等式,也可巩固加深对所学的简易方程的认识。
在教学本课时,我首先给出一些数量关系让学生判断成什么比例,依据什么判断。利用课本主题情境图引入例5后,提出:你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。再进一步说明:这样的问题可以应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。同时出示以下问题让学生思考和讨论:
1、问题中有哪两种量?
2、它们成什么比例关系?你是根据什么判断的?
3、根据这样的比例关系,你能列出等式吗?
让学生先独立自学课本的内容,后在小组内讨论交流使学生明确:因为水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的,从而理解正比例应用的主要内容。而后例6的教学则依照例5让学生完全自学,但最后注意了启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例的关系的问题的方法。
练习时,运用“做一做”直接让学生运用比例的知识解答,解答后对照两题说一说这两量题数量关系有什么不同,是怎样列式解答的。从而加深对正、反比例意义的理解。
回顾本次教学环节,还有很多方面有待改进和提高。
一、创设问题情境,激发学生探索的兴趣与空间
生活中处处有数学,在实际生活与应用中学数学,不仅是理念,更应该是我们在实践中不懈的共同追求。本课教学中,课前的画面情境的引入,沟通了数学与生活之间的联系,引导学生用数学的眼光去发现生活中的数学问题。
二、给学生充分交流的机会与思考的空间
教学中,我注重培养了学生的实际运用能力,将比例与实际联系起来,理解比例的意义和作用,让学生感受生活中的数学,体验数学的应用价值。培养学生运用所学知识解决实际问题的能力,是贯穿本单元学习目标之一。实践教学后,我在思考:“学生的实践能力应该如何在各个课时教学中有序地逐步地渗透,它的度应该怎么掌握?我想这有待于我在今后的教学中不断去摸索、去总结。
三、要多让学生用自己的语言来表达,训练学生对数学知识表达的能力
“比例的应用”关键是确定题中不变量,特别是变量的比例关系,如果不充分让学生用数学语言表达,弄清题目的真正题意,虽照本宣科会做题,对于基本思路还是模糊的,其义还是不明,达不到较高的教学目标。
六年级数学下册教学反思9
正比例的教学,是在孩子们掌握了比例的意义和基本性质的基础上进行教学的,着重使孩子们理解正比例的意义。正、反比例知识,内容抽象,孩子们难以接受。学好正比例是学习反比例的基础。因此在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入
数学来源于生活,又服务于生活。关注孩子们已有的生活经验和兴趣,首先让学生从已有知识中寻找相关联的两个量,然后通过呈现现实生活中的三个素材路程、速度,总价、数量,工作总量、工作时间这两个相关联的量引入新课,使抽象的数学知识具有丰富的现实背景,为孩子们的数学学习提供了生动活泼、主动的材料与环境。
2、在观察中思考
本课教学中,我注意把思考贯穿教学的全过程,让孩子们通过观察两个相关联的量,思考他们之间的特征,初步渗透正比例的概念。这样的教学,让所有孩子们在观察中思考、在思考中探索、在探索中获得新知,提高了学习的效率。
3、在合作中感悟
新的数学课程标准提倡:引导孩子们以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导孩子们初步认识了两个相关联的量后,敢于放手让孩子们采取小组合作的方式自学,在小组里进行合作探究,做到:孩子们自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。
4、在练习中巩固提升
为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让学生自己研究圆的半径和圆有什么关系,正方形的边长和它的面积有什么关系,让孩子们在巩固本节课知识的同时,学会通过研究会判断,同时孩子们的思维也得到了提高;最后引导孩子们自己对知识进行梳理,培养孩子们的归纳能力,使孩子们进一步掌握了正比例的意义。
周一上了《反比例的量》,周末已经布置学生回去预习,所以上课的第一件事就是检查预习情况,提出了三个问题:反比例的意义是什么?判断两种量成反比例的关键(重要条件)是什么?你能举出一个成反比例关系的例子吗?不出我的预料,学生很多卡在了第三个问题。学生周末有的会放松自己,有大半不过关,当然这里包括了已经预习的,但是已经忘记了的。少不了他们要写反思,从他们的反思看,有很多是因为回答不出我提出的某个问题而不过关的,有的是周六预习而周一忘记了的,有的只是马虎看了一下课本……
虽然预习情况不如人意,但是上课的效果还是比较好,同学们听得很认真。通过检查,由于学生已经意识到自己的弱点了,所以当提出三个问题后也就相当于指出了这节课学习的重点、提出了学习的目标,有了明确的目标,学生带着目标、问题学习效果来得更明显。我先让他们再次认真阅读课本,接着课件演示例3的试验:把相同体积的水倒入底面积不同的杯子,发现底面积越大,水的高度越低,反之,底面积减少,高度反而升高,而且高度和底面积的乘积一定。接着就揭示反比例的意义及其关系式、举生活中成反比例的量的例子,这次他们就熟练多了,举出了很多,我一一板书在黑板上,让他们再用自己的语言说一次,提高他们的口头表达能力。接下来把正比例和反比例进行对比小结,学生对正比例和反比例的理解就更深刻了。看看时间,用了30分钟,这与“20分钟的新课”有冲突,但是学生能对一个概念理解更透彻一些,我觉得花多点时间还是有必要的。最后做了3道练习题。总体上看还不错。
六年级数学下册教学反思10
一、注意生活化抽象到数学化,让学生掌握知识的共同特点
1.对于圆柱物体的认识(教材P10),圆锥物体的认识(教材P23),不容忽视,这一环节是生活化的具体表现,再从生活化的物体抽象到数学化的图形,这又是数学化的具体运用,是知识从形象到抽象的过程。
(图略)
2.抽象出具体的图形后,再让学生观察并说说这些图形的共同特点,更好地认识圆柱(或圆锥)的特征。避免知识形成的片面化。
二、注意计算公式的直观推导,让学生掌握知识的形成过程
知识的形成比结果更重要。这也是课程标准的重要理念。
1.圆柱侧面积计算公式的推导
让学生用二张长方形纸和一张正方形纸分别围成一个圆柱体。将围成的圆柱体的其中二个沿着高剪开,另一具斜着剪开。然后展开,让学生知道圆柱的侧面展开,可能得到一个长方形(或正方形,或*行四边形)。
圆柱的侧面展开可以得到一个长方形,这个长方形的长就是圆柱的底面周长,宽就是圆柱的高。
圆柱的侧面展开可以得到一个*行四边形,这个*行四边形的底就是圆柱的底面周长,宽就是圆柱的高。
2.圆柱体积计算公式的推导
(1)圆柱等分可以拼成一个近似的长方形,这个长方体的底面积就是圆柱的底面积,这个长方体的高就是圆柱的高。
因为长方体的体积=底面积高
所以圆柱体的体积=底面积高
(2)圆柱等分可以拼成一个近似的长方形,这个长方体的长就是就是圆柱底面周长的一半(r),这个长方体的宽就是圆柱的底面半径(r),这个长方体的高就是圆柱的高。
因为长方体的体积=长 宽 高
所以圆柱的体积 =r r h=r h
3.圆锥体积计算公式的推导
同底等高的圆柱与圆锥,让学生用水量一量,观察,讨论与交流以下问题。
同底等高,圆柱的体积是圆锥体积的()倍。圆锥体积是圆柱体积的( )。从而得到圆锥体积的计算公式:
因为圆柱体积=底面积高
所以圆锥体积=1/3底面积高
=1/3Sh=1/3r h
三、注意用字母表示已知条件,让学生养成良好的解题习惯
这一举动既是培养良好的解题习惯,也是为中学学习奠定良好的基础。教学实践证明,这一举动还可以提高学生的分析能力,也可以为学生选择恰当的计算公式服务,同时又可避免学生对条件丢三落四,真是一举多得。
例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?
已知h=28厘米,d=20厘米,r=10厘米,
S表=dh+r
V柱=r h
四、注意计算公式的书写要求,让学生更好的进行中小衔接
学生升上中学后,不论是数学、物理、化学匀需要书写计算公式。因此作为中、小学衔接,就应该这样做,要求学生带计算公式计算,养成良好习惯,为中学学习奠基。计算中并要求学生保留,既与中学衔接,又减轻学生计算的负担。
例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?
人教版六年级下册数学《圆柱与圆锥》教学反思已知h=28厘米,d=20厘米,r=10厘米,S表=dh+r
=20xx+10
=560+100
=660(*方厘米)
五、注意由面到体的变化,提高学生*面到立体的认识
长方形的小旗是一个*面图形,它旋转后所得到的轨迹是一个圆柱体。三角形小旗也是一个*面图形,它旋转后所得轨迹是一个圆锥体。学生看*面图的数据后会求立体图的体积(或表面积),可以提高学生*面图形到立体图形的认识。
六、注意加强知识的联系转化,提高学生的空间思维能力
1.圆柱体侧面展开转化成长方形
(1)圆柱的侧面展开得到一个长方形,这个长方形的长是12.56厘米,宽是4厘米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
(2)圆柱的侧面展开得到一个正方形,这个正方形的边长是6.28分米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
2.圆柱体转化成长方体
(1)圆柱的半径是2分米,高是5分米,将圆柱等分后拼成一个近似的长方体。表面积增加多少?
(2)圆柱等分拼成近似的长方体,这个长方体的长是12.56厘米,高是4厘米,求原来圆柱的侧面积和体积
(3)圆柱等分拼成近似的长方体,这个长方体的宽是5厘米,高是4厘米,求原来圆柱的侧面积和体积
(4)圆柱等分拼成一个近似的长方体,表面积增加100*方厘米,求原来的侧面积。
3.圆柱体截面情况
(1)圆柱的半径是4分米,高是10分米,将圆柱横切成3段,表面积增加多少?
(2)一根圆柱长是8分米,将圆柱横切成4段,表面积增加30*方分米。求原来圆柱的体积。
(3)圆柱的直径是10厘米,高是6厘米,沿着直径和高切开,把圆柱*均分成二半,表面积增加多少?
(4)圆柱的直径是8厘米,沿着直径和高切开,把圆柱*均分成二半,表面积增加80*方厘米,原来圆柱的侧面积、表面积分别是多少?体积是多少?
4.圆柱体侧面增加(减少)
(1)一个圆柱的高是10厘米,如果高再增加3厘米。表面积增加18.84*方厘米,求原来圆柱的侧面积、表面积。体积是多少?
(2)一个圆柱的高是10厘米,如果高减少3厘米。表面积减少18.84*方厘米,求原来圆柱的侧面积、表面积。体积是多少?
5.圆柱和圆锥体积知识变化与联系练习
(1)一个圆柱的体积是24立方厘米,把它削成一个最大的圆锥,要削去( )立方厘米。
(2)一个圆锥体和一个圆柱体底面积和高相等,它们的体积之和60立方厘米,这个圆锥的体积是( )
(3)圆柱和圆锥同底等高。圆柱的体积比圆锥的体积多1.8立方分米,原来圆柱的体积是( )。圆锥的体积是( )。
(4)一块底面半径为3分米,高5分米的圆锥体钢锭,熔铸成一个底面直径为4分米的圆柱形钢材,求这段钢材的长
(5)一个底面直径是24厘米的圆柱形玻璃杯装有水,水里浸没一具底面直径为12厘米,高8厘米的圆锥形钢块,当钢块从水中取出时,杯中的水会下降多少厘米?
(6)一个瓶子内直径8厘米,装入10厘米高的水后,盖好瓶子倒过来(如图),量得空余部分的高是2.5厘米,求这个瓶子的容积是多少毫升?