七年级数学下册优秀课件简短1、实数的概念及分类①实数的分类②无理数无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:开下面是小编为大家整理的七年级数学下册优秀课件简短5篇,供大家参考。
七年级数学下册优秀课件简短篇1
1、实数的概念及分类
①实数的分类
②无理数
无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
开方开不尽的数,如 √7 ,3 √2等;
有特定意义的数,如圆周率π,或化简后含有π的数,如π /₃+8等;
有特定结构的数,如0.1010010001…等;
某些三角函数值,如sin60°等
2、实数的倒数、相反数和绝对值
①相反数
实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
②绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
③倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。
④数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
⑤估算
3、平方根、算数平方根和立方根
①算术平方根
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。
性质:正数和零的算术平方根都只有一个,0的算术平方根是0。
②平方根
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0
③立方根
一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。
表示方法:记作 3 √a
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。
4、实数大小的比较
①实数比较大小
正数大于零,负数小于零,正数大于一切负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
②实数大小比较的几种常用方法
数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
求差比较:设a、b是实数 a-b>0↔a>b; a-b=0↔a=b; a-b<0↔a
绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣↔a
平方法:设a、b是两负实数,则 a2>b2↔a
①含有二次根号“ √ ”;被开方数a必须是非负数。
②性质:
③运算结果若含有“ √ ”形式,必须满足:
被开方数的因数是整数,因式是整式
被开方数中不含能开得尽方的因数或因式
6、实数的运算
①六种运算:加、减、乘、除、乘方 、开方。
②实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
③运算律
加法交换律 a+b= b+a
加法结合律 (a+b)+c= a+( b+c )
乘法交换律 ab= ba
乘法结合律 (ab)c = a( bc )
乘法对加法的分配律 a( b+c )=ab+ac
七年级数学下册优秀课件简短篇2
一。整式
※1.单项式
①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。
③一个单项式中,所有字母的指数和叫做这个单项式的次数。
※2.多项式
①几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
※3.整式单项式和多项式统称为整式。
二。整式的加减
1、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
2、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
三。同底数幂的乘法
※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用:(m、n均为正整数)
四。幂的乘方与积的乘方
※1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
※2.。
※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
五。同底数幂的除法
※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n)。
※2.在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义。
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;
七年级数学下册优秀课件简短篇3
把所有的同类数据按照大小的顺序排列。如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那两个数据的算术平均值就是这群数据的中位数。
例题:找出这组数据23、29、20、32、23、21、33、25 的中位数。
首先将该组数据进行排列(这里按从小到大的顺序),得到:
20、21、23、23、25、29、32、33
因为该组数据一共由8个数据组成,n为偶数,
故按中位数的计算方法,得到中位数(23+25)/2=24,
即第四个数和第五个数的平均数。
七年级数学下册优秀课件简短篇4
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
3、此法则也可以逆用,即:amn =(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn=(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am—n(a≠0)。
2、此法则也可以逆用,即:am—n = am÷an(a≠0)。
十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)?(a—b)的形式,然后看a2与b2是否容易计算。
学数学的方法有哪些
1注重打好数学基础
对于学生来说,想要学好数学,那么一定从小打好基础,因为数学是一个非常注重基础,一环扣一环的学科,之前知识上的欠缺也会影响后续的学习,所以对于数学不好的学生来说首先应该做的就是打基础,把自己欠缺的基础都补上,才能更好的进行后续的学习。
2整理笔记
关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到中考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 )
怎么样才能打好初一数学基础
第一,重视初一数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对初一数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,初一学生缺乏对概念的理解。
还有一部分初一同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?
第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么初一的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初一数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初一学生不会做到这一点那么久而久之,不会的数学题目还是不会。
七年级数学下册优秀课件简短篇5
我们学校数学教学难,学生基础差,一些教学观念的落后陈旧,内容的不灵活,为保证教学顺利进行,提高学生的学习能力,应使用一些切实可行的计划。
一、学生情况分析
有的学生对自己学习数学的信心不足,积极主动性不够,而所学的数学基础知识薄弱,基本概念模糊不清,基本方法掌握不够扎实,缺乏对基础的理解和研究,没有注重对所学知识和方法进行及时的复习与巩固,进而遗忘很快;灵活运用知识分析问题,解决问题能力差,只会模仿,不会举一反三,有点变化的题目就会变得束手无策。
二、教学目的
1、获得必要的数学基础知识和基本技能,理解数学基本概念、数学理论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及他们在后续学习中的作用。通过不同形式的自主、探究活动,体验数学发现和创造的过程。
2、提高对数学提出、分析和解决问题的能力,发展独立获取数学知识的能力。
3、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
三、教学目标
1、理解整式、分式、数的乘方和开方的概念;中我他们的性质和运算法则
2、掌握一元二次方程的解法,能解简单的二元一次方程组、二元二次方程组;能灵活的运用一元二次方程根的判别式以及根与系数的关系解决相关问题
3、理解分数指数幂的概念,掌握有理指数幂的运算性质。
4、了解集合、元素、子集的概念:了解区间的概念,能够利用区间的形式表示简单的数集。
四、教学分析
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,创设能体现数学概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。
2、在教学中强调类比,推广,特殊化等数学思想方法,尽可能培养其逻辑思维的习惯。
五、教学措施
1、抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,因此,抓号课堂教学是教学之根本,是提高数学成绩的主要途径。
2、加强课外辅导,提高竞争能力。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
3、搞好单元测试,对阶段性的考试进行分析。
推荐访问:下册 简短 课件 七年级数学下册优秀课件简短版 七年级数学下册优秀课件简短一点 七年级数学下册优秀课件简短图片 七年级下册数学课件ppt 七年级数学下册教学课件 七年级下册数学 初中数学七年级下册课件 7年级数学下册课件 七年级下册数学优质课视频 七下数学ppt