2023年《小数乘小数》的教学设计优秀7篇

时间:2023-07-04 15:50:03 公文范文 来源:网友投稿

《小数乘小数》的教学设计优秀教学内容:小学数学苏教版第九册第九单元小数乘法和除法(二)例1、“试一试”、“练一练”和练习十五第1-3题。教材分析:这部分内容下面是小编为大家整理的《小数乘小数》的教学设计优秀7篇,供大家参考。

《小数乘小数》的教学设计优秀7篇

《小数乘小数》的教学设计优秀篇1

教学内容: 小学数学苏教版第九册第九单元小数乘法和除法(二)例1、“试一试”、“练一练”和练习十五第1-3题 。

教材分析:

这部分内容主要教学小数乘小数的计算。教材一共安排了两道例题和一个练习。本节课准备完成例1、“试一试”、“练一练”及练习十五1-3题 。

为了呈现例1,教材首先出示了“小明”房间的平面图,让学生有较为直观的感觉,然后通过问题引发学生思考,房间的面积有多大?要先估计,再计算。

其次,在学生进行估计后,教材重点组织安排学生探索笔算的方法。先告诉学生可以把算式中的两个小数都可以看成整数来计算,再结合直观图讨论:按整数相乘后,如何得到原来的积?

“试一试”也是利用例1的推论,求平面图中阳台的面积。教材通过直观图,继续呈现2.8×1.15的计算过程,但把其中的关键步骤留给学生完成,给学生思维的空间

和训练的机会。在此基础上,启发学生进行讨论:上面两题中的两个因数的小数位数与积的小数位数有什么关系?从而初步抽象出小数乘小数的计算方法。“练一练”两题就是针对小数乘小数计算方法的关键环节,让学生根据因数中的小数位数直接在乘积中点上小数点,并且让学生根据刚刚学过的方法进行独立计算练习,达到学以致用。

设计思路:

本节课在教学时,首先通过复习引入,从而自然过渡到例1的教学。在教学例1时出示情境图,让学生感知怎样计算小明房间的面积,即运用长方形的面积公式进行计算。在学生列出算式后,启发学生把“3.6×2.8”与以往学习的小数乘法进行比较,从而引导学生发现两个因数都是小数。然后让学生运用不同的方法进行估算,以便为下一步计算结果进行验证。接着让学生分小组进行讨论:如何来计算“3.6×2.8”?学生讨论后,教者及时小结方法板书,并且通过课件演示算法,给学生以直观的动态感知,然后引入“试一试”放手让学生探究完成,小组进行汇报,借助课件演示计算的过程。(板书)

此时为了概括出小数乘小数的计算方法。再一次让学生讨论:①刚才两题的积与因数的小数位数之间有什么关系?②怎样确定积中小数点的位置。③小数末尾的“0”该如何处理?

讨论后汇报,及时通过课件展示结论,抽象总结出“小数乘小数”的计算方法。并且强调以后在计算时可以直接使用这种方法来计算“小数乘小数”。接着不失时机地引入“练一练”的教学。运用课件出示第一题,让学生进行练习,然后再在课本上完成。第二题让三个学生板演,其他学生独立完成。强化计算的方法,强调小数末尾“0”要化简。接着出示诊断性练习三题,让学生当医生,找病因。进一步训练学生点好积中的小数点。分小组比赛,重在激发学生的兴趣,强化计算的方法着重训练乘积中小数点的定位。

最后再出示拓展练习,启发学生思考,引导探索找出方法,培养学生学习数学的乐趣。

教学目标:

1、通过学习自主探索,理解掌握小数乘小数的计算方法,并能正确进行计算。

2、在探索的过程中培养学生抽象、概括的能力。

3、体会数学知识之间的联系,感受在数学探索活动中的乐趣,进一步体会成功,增强学习数学的信心。

教学重点:小数乘小数的计算方法。

教学难点:小数乘法中,积的小数点的定位。

教学准备:多媒体课件、小黑板等

教学过程:

一、激情导入。

1、同学们上一单元我们已经学习了小数乘法,小数乘法中两个因数有什么特点?你是怎样确定积的小数点的?

2、出示口算练习。

0.6×3     8×0.9   52×0.1    4×0.25   4.03×0

(设计意图:通过复习,注重了新旧知识之间的联系。安排口算训练,重在培养学生的数感,以便运用知识的迁移,完成本节课的教学内容。)

二、教学例1。

①让一个学生读题。提问:“根据图中的有关数据你会提出哪些问题?在小组里说说。

要求小明房间的面积怎么求?运用什么面积公式?

指名列出式子。板书:3.6×2.8

②“3.6×2.8”估计是多少呢?有不同的估算方法吗?结果大约是多少?指名学生回答。

③“3.6×2.8”与上一单元学习的小数乘法有什么不同?在小组里相互说说。再请一个学生回答。

④“怎样来计算3.6×2.8?”“你有什么好的方法?”小组进行讨论。

选小组代表回答。

“可以当整数来计算。”

“可以用已教的小数乘法的方法来估算。”

“运用计算器来计算。”

大家都很爱开动脑筋,提出了这么多好的建议,那么究竟怎样来计算呢?

(设计意图:通过估计,训练学生用不同方法解决问题,培养学生思维的积极性,点燃思维的火花。探讨3.6×2.8的计算方法,在于初步让学生自己去解决有关问题,培养了学生思维的发散性,为下一步演示计算方法提供了一个依据。)

⑤综合学生的建议,用课件演示计算的方法,并进行板书。

3.6       ×10           3 6

×2.8       ×10        × 2 8

2 8 8                    2 8 8

7 2                      7 2

1 0.0 8      ÷100       1 0 0 8

讨论:为什么最后的1008要除以100?不除以100行吗?依据是什么?

根据讨论,进行小结。因为两个因数都乘了10,即乘了10×10=100,为了使计算的结果不变,积1008就要除以100。依据是积不变的规律。最后还要答题,以保持做题的完整性。

二、讨论“试一试”。小明房间的面积会做了,阳台的面积又如何进行计算呢?根据学生的回答,板书:2.8×1.15

“2.8×1.15”在计算时,怎样书写可以使计算过程简便一些?

运用刚才学到的方法,各自在课本上完成。

课件出示演示的过程,把学生填写的与出示的过程进行比较,这道题有什么地方要注意的吗?

①把两题进行比较:课件上出示讨论题。“上面的两题的因数的小数位数与积的小数位数之间有什么联系?”“怎样确定积中小数点的位置?”“小数末尾的‘0’如何处理?

分小组进行讨论。

让学生汇报,并及时进行补充。

“两个因数中一共有几位小数,积里也有几位小数。”

“小数末尾的“0”可以化简。”

“在积里点上小数点。”

“有谁要补充的吗?”

这时,有个学生举手,“老师,点积的小数点可以从左边点。”

“不,应该从右边点。”

这时,班上明显形成了两种对立的意见,点小数点成了矛盾的焦点,争论到了顶峰。

这是我在备课中没有考虑到的情况。我稍作冷静,对大家进行了安慰。

②“同学们,请安静,你们学习的态度,善于钻研的精神值得肯定。至于谁的说法有道理,先放一放。我们先来把两题的结果观察一下,好吗?”

出示:10.08和3.220

“把这两个数与各自的两个因数进行比较。第一题因数中有几位小数?积呢?第二题呢?看哪一组的同学观察得比较认真。”

“老师,刚才我看错了,应该从右边点起。”

我抓住时机,及时进行引导。“你知道,为什么从右边点小数点而不从左边点呢?”

火候已到,我及时设置疑问。“你能说说积中点小数点的方法好吗?”

大家纷纷举手发言

③小结:其实大家都爱动脑筋,观察得也很仔细,学习就要这样认真才行。

课件出示:因数中一共有几位小数,就从积的右边起数出几位,点上小数点。(齐读)

“有什么要补充的吗?”

“老师,我认为还应该加上一句‘能化简的要化简’。”

“你说得真好,考虑得也很全面。”

这时又有一个学生举手。“请你站起来说说,好吗?

“在计算过程中,有简便的要用简便的方法”

“老师,还要补上:先按整数乘法算出结果是多少。”

“你们真不简单!”

(设计意图:这是本节课的重点。教学中我先设法调动学生的感官,让学生观察因数与积的小数位数的关系,初步感知确定小数点的方法。在教学时,设置疑问引发学生思考,课堂上形成了两种不同的观点,讨论、探究到了高潮,矛盾的焦点十分集中。我运用课件适时地引导学生进一步观察、比较,找出解决的方法,从而抽象出小数乘小数的计算方法。教学中引导学生观察、讨论、探究,充分发挥了学生的主体意识。合作、交流,激发了学生的思维,培养了学生抽象思维的能力,调动了学生的情感,激发了求知欲。这样,既让学生掌握了知识又训练了学生的观察和计算的能力。)

三、巩固练习:

1、课件出示课本“练一练”第1题。

先让学生观察,指名说说如何确定积的小数点。

指名回答。然后,再在书上完成。

2、课件出示“练习十五”第2题(当医生,找病根)

①“怎样进行改错,你有什么好的办法和建议?”

②先找出问题,指名改错。

③“有什么要补充的吗?”(能化简的要化简。)

3、“练一练”第2题。

分小组,比赛完成。

请学生自评,然后互评。

(设计意图:通过点积的小数点、小组比赛、反馈练习等形式,让学生进一步掌握小数乘小数的计算方法,尤其是积中的小数点的定位问题。这样既训练了学生的观察能力,比较的能力,又能训练学生主动发现问题,并设法解决相关问题的能力。)

四、拓展练习。

1、 课件出示练习:

用一根铁丝恰好能围成一个长方形。已知这个长方形的宽是1.8分米,长是宽的2.5倍,这根铁丝长多少分米?

2、读题后,让学生简要分析计算的方法。

(设计意图:通过出示拓展题,进一步巩固所学的知识,同时开阔了学生的视野,调动了学生学习的积极性。)

六、课堂作业:

练习十五第1、3题。

五、小结:

1、本节课学会了什么?

2、你还有什么问题吗?

《小数乘小数》的教学设计优秀篇2

[教学内容]

教材第82~83页例1、“试一试”以及相应的练习。

[教学目标]

1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。

2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。

3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。

[教学重点]

确定积的小数点的位置。

[教学难点]

理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。

[教材简析]

本课学习小数乘小数的计算方法,其教学的生长点是整数乘法。然而, “按整数乘法相乘后怎样得到原来的积”,则需要经历一个严密的推理过程,教材安排两次探究活动: 第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究以后,比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算法则。

[教学过程]

一、在“情境”中引发问题

1、复习旧知:小明搬了新家,这是他家的建筑平面图。你能计算每个房间的占地面积吗?说说你是怎样算的?

书房的面积:3×3=9平方米

厨房的面积:2.7×2=5.4平方米,先按照整数乘法进行计算,因为2.7中有一位小数,所以积中也有一位小数。

客厅的面积:3.21×5=16.05平方米 先按照整数乘法进行计算,因为3.21中有两位小数,所以积中也有两位小数。

2、提出问题:有没有同学能计算卧室的面积?

列出算式:3.6×2.8  (学生苦于无法计算,面露难色)

指导观察:“3.6×2.8”和刚才的乘法算式有什么不同?

揭示课题:这节课我们一起来探讨“小数乘小数 ”的计算方法。

(设计意图:从计算“房间的面积”这个生活原型引入,突出数学与实际生活的联系,唤起学生的学习兴趣。学生在计算房间面积过程中,既复习了已有知识,激活了新知的生长点,又引出了“小数乘小数”的新的数学问题,给计算教学增添了浓郁的现实意义。)

二、在推理中实现转化

(一)尝试计算,引导推理

1、估一估,确定积的范围

先估计一下,“3.6×2.8”的积大约是多少?

估算方法一:4×3=12平方米,把3.6和2.8分别看成最为接近的整数,把两个数都看大了,准确得数比估计的数小,所以积小于12平方米。

方法二:3×3=9平方米,把3.6和2.8分别看成比较接近的整数,把3.6看小,2.8看大,所以积在9平方米左右。

确定范围:通过刚才的估计,我们知道“3.6×2.8”的积应该小于12平方米或是9平方米左右,那么准确得数究竟是多少呢?我们可以用竖式来计算。

(设计意图:在竖式计算之前先估一估,一方面使学生体会到解决问题策略的多样性与灵活性,在不要求精确结果的情况下可以使用估算方法很快解决实际问题。同时不同估算方法得到的结果也能为探索笔算方法提供正确结果的大致范围。)

2、点拨转化方向

根据我们以往计算小数乘整数的经验,猜测一下:用竖式计算小数乘小数可以怎样计算?(把两个小数都看成整数,先按整数乘法进行计算,点上小数点。)

3、尝试计算,突现矛盾

学生独立尝试计算,小组相互交流。而后,选择不同的方法板书在黑板上。可能有以下两种方法:

3.6                           3.6

×2.8                         ×2.8

2 8 8                          2 8 8

7 2                            7 2

10 0.8                        1 0.0 8

( a)                   ();        (b)

方法a:把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积也是一位小数,结果是100.8。

方法b:我也是把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积中肯定也有两位小数,积是10.08。

突现矛盾:两种算法似乎都有各自的道理。那么,根据你的理解,哪种算法可能是正确的?(学生可以从刚才估计的结果来判断)大家一致认为10.08是合理的答案,看来关键问题是积的小数位数。计算3.6×2.8的积为什么要点出两位小数?我们继续研究。

4、激活旧知,引导推理

尝试解释:计算3.6×2.8的积为什么要点出两位小数?你能想办法说明吗?

可能出现两种解释方法。方法一:把3.6米和2.8米分别改写成分米作单位,算出面积是1008平方分米,再还原成平方米作单位。所以积是两位小数。方法二:运用“积的变化规律”和“小数点移动规律”,计算时把3.6和2.8分别看作36和28 ,把两个因数都乘了10,算出的积1008就等于原来的积乘100。为了让积不变,就要把1008除以100。

引导推理:随着学生的回答,出示分析推理图,你能看懂虚线框里的意思吗?谁愿意说说自己的理解?

3.6

×2.8

2 8 8

7 2

10 0 8

看着分析图,引导学生完整叙述整个推理过程。

第一个箭头“×10”是把3.6看成36 是乘10;第二个箭头“×10”是把2.8看成28 是乘10;把两个因数都乘10,得到的积就等于原来的积乘100;最后一个箭头“÷ 100”表示要得到原来的积就要把得到的整数积除以100。

现在你们知道算法a错在哪里了吗?(两个因数都乘10,积也就乘了100,算法a只把得到的积除以了10。)

小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。

通过推理,我们证明了3.6×2.8=10.08,和估计的结果是一致的,积确实小于12平方米或是9平方米左右。

(设计意图:最现实的教学起点是学生认知上的困惑与矛盾处。学生根据以往小数乘整数的经验,能够凭借直觉判断小数乘小数也能转化乘整数乘法进行。然而按整数乘法算出积后如何回归到小数乘法的积,恰是学生的思维困惑处。适时呈现推理图,让学生思考虚线框里的箭头图及提示算式的意思,扶着学生一步步完成整个推理过程。)

(二) 独立推理,实现转化

1、提出问题:刚才我们求出了小明房间的面积,阳台的面积是多少平方米呢?

根据例题学习的方法,先想一想可以怎样计算2.8×1.15 ,再根据自己的思考过程,结合分析图完成。

1.1 5

× 2.8

9 2 0

2 3 0

2、交流推理过程:你是怎样得到1.15乘2.8的积的?追问:得到3220后为什么除以1000呢?

引导学生表达(结合分析图):把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000。要求原来的积,就要用3220除以1000,从3220的右边起数出三位,点上小数点。

3.220可以化简吗?根据是什么?

(设计意图:这里学生独立经历推理的过程,看图填数,依着箭头图的提示进行完整的思考。通过扶放结合,循序渐进的数学推理活动,学生在探索中感受着计算思维的内在魅力,感悟着知识间的内在联系、解决新问题的有效途径——转化策略,同时对“积的小数位数与因数小数位数”的关系也有了初步的体验。)

(三) 专项对比,概括方法

1、专项对比:两次探究之后,我们来比较各题中两个因数与积的小数位数,你发现它们之间有什么联系?(小数与小数相乘时,如果因数里一共有几位小数,那么积里面就有几位小数。)

2、你能给下面各题的积点上小数点吗?

8.7              72.9           16.5

×0.9            ×0.04         × 0.6

7 8 3             2 916           9 9 0

3、概括方法:通过探索,大家对小数乘小数的方法都有了各自的理解。那么,你觉得小数乘小数应该怎样计算?小组里互相说一说。

在全班交流的基础上引导学生完整表达:先按整数乘法算出积,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。跟我们刚才的猜测是吻合的,关键是确定积的小数点的位置。

(设计意图:探索之后应是发现与提升。通过比较因数与积的小数位数的关系,学生在理解算理的基础上自然发现积里点小数点的操作方法。随后归纳概括出小数乘小数的计算方法也就水到渠成了。)

三、在“应用”中发展思维

1、基本练习

(1)根据148×23=3404,很快地写出下面各题的积

14.8×23=   148×2.3=      14.8×2.3=    1.48×2.3=    0.148×23=

(2)完成练习十四第1题。学生独立计算,然后同桌互相检查计算过程。

2、解决问题

(1)星期天,小明的妈妈去超市买东西。

商品名称

色 拉 油

饼 干

大 米

单价

38.7元/瓶

15.6元/千克

5.8元/千克

数量

2瓶

1.5千克

18.4千克

总价

(2)这是小明的爸爸去某地出差乘出租车的一张发票,显示以下信息:单价1.6元,里程5.5千米,起步价8元/3千米。学生讨论算法,尝试计算。

3、拓展练习

在括号里填上合适的数,使算式成立。

(    )×(    )=0.48

(设计意图:这里既有突出重点方法的专项练习、基本练习,又有运用方法解决问题的实际应用,更有拓展思维的挑战性练习,希望通过一系列有层次的练习活动,实现学生计算教学中的基础性和发展性的和谐统一。)

四、在“交流”中提升经验

让学生畅谈学习的感想,并总结本课的主要知识。

(设计意图:反思是重要的学习方式,在新课即将结束时,引导学生回顾与反思方法与技能的获得过程,能帮助学生提升转化这一重要的解决问题的策略,丰富学生的体验。)

《小数乘小数》的教学设计优秀篇3

今天我说课的课题是《小数乘小数》。它是苏教版小学五年级上册第九单元第一课时的教学内容。这部分内容主要是教学小数的计算,教材一共安排了两道例题和一个练习。

一、教材分析:

(一) 教材所处的地位

小数乘以小数是在学生学习了小数乘以整数、整数乘以小数及整数乘法的基础上进行教学的。它既是小数除法学习的基础,也是小数四则混合运算和分数小数四则混合运算学习的基础。

(二) 教学重难点的确立

教学要求:

1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行估算、口算、笔算。

2、在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想。

3、使学生体验学习过程是一个不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。

教学重点:学生自己探索获得“小数乘以小数”的计算方法。培养学生自主探索的能力,即独立获取知识的能力。

教学难点:通过转化探索活动,使学生发现因数中小数位数与积中小数位数的对应关系,悟出“两个因数中的小数位数就是积中的小数的位数”。

二、说教法、学法

紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。

1、以学生为主体,发展学生的自主学习能力与思维能力。

数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现小数乘以小数的算理和算法,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先呈现房间平面图,启发学生获取信息,提出问题,列出算式说明及依据。教学计算要善于捕捉差距,关注生成。如:通过以上学生知识形成的过程与经验,紧接着出示阳台的面积是多少平方米,学生自主用已有的生活经验探索两位小数与两位小数相乘中两个因数与积的小数位数的关系。并在小组里讨论过程中学生自主生成,小数乘小数的计算法则,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。

2、正确把握教师主导与学生主体的关系。

本课力求在每一个环节的推进过程中都先让学生独立思考、独立探究,再让小组合作讨论探究,教师只起穿针引线的作用,给予学生应有的尊重与信任,提供其广阔的思考空间与交流机会,使其通过个体思考,小组或组际交流逐步得出自身认可的计算法则或规律,充分体现学生是课堂学习的主人。比如:教材重点组织学生探索笔算的方法,先告诉学生可以把竖式中的两个小数都看成整数来计算,再结合直观图示讨论,按整数相乘后怎样才能得到原有的数?启发学生理解,把两个因数看成整数,等于把原来两个因数分别乘以10得到整数,因数扩大100倍,积也就积也就相应扩大100倍。因此要得到原来算式的积,应用整数相乘的积反过来除以100。除此以外,学生可以通过单位换算把米化成分米得到的积后再换算成平方米。学生可以通过对笔算结果与估计结果的比较,判断笔算结果是否合理,从而确认相应计算方法的正确性。在引入“3.6x2.8”时要求学生先用两种方法估算,并说明正确答案的范围,根据以上推断,让学生独立计算,为接下来笔算方法提供一种支持。

四、说教学程序

为充分体现以上的一些设想,本课的具体过程如下:

1、创设情境,引出可探索的“数学问题”。

数学来源于生活,通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到了数学与生活的密切联系,认识到计算确实是一种需要,产生急于要弄明白的求知心理,激起了探索的欲望与兴趣,为下一步的自主探究创造了良好的心理条件。如在创设情景引入的过程中,教师问:“你获取了哪些信息?”可以体现教师创造性使用教材,让学生自己提出问题,自己列式,自己解答,使枯燥知识变成善于学习的知识。

2、对算理和算法的自主探索。

在整个过程中,教师放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解释新问题的氛围。

(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,让教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。

(2)交流各自的算法与想法。在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8x3.6的结果最大是多少,然后让学生再进行计算。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。

3、运用规律来解决问题,让学生进一步感悟算理,获得方法。

运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。

4、运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。

小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。最后还安排了一个实践题:一种西装面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估算的数,在计算)并应用本节课学习的知识计算出物品的总价。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。

总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。

《小数乘小数》的教学设计优秀篇4

教学内容:

P70页例7及“试一试和练一练”,练习十二2、3题。

教学目标:

使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。

教学重点:

正确运用计算法则计算小数乘小数的乘法

教学难点:

理解小数乘小数的意义,掌握小数乘小数的计算法则

教学过程

一、复习

0.52+0.48=0.17+0.33=3.6+6.4=

0.8×3=3.7×5=46×0.3=

二、新授:

1、教学例7。

(1)出示例7

(2)从图中你知道了哪些信息?

(3)提问:如果要求小明房间的面积有多大?先估计一下。

3.8×3.2≈()(说一说估计的方法)

(4)提出:列竖式计算怎样算呢?

把这两个小数都看成整数,很快计结果。

相乘后怎样才能得到原来的积?

(4)讨论得出:两个因数分别乘10,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是12.16。

2、第65页试一试。

提出:要求阳台的面积是多少平方米?怎样列式?

计算3.2×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?(学生尝试完成,展示学生作业)

强调:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.68

3、小数乘小数的计算法则。

(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?

(2)同桌讨论:说说小数乘小数应该怎样计算?

小结:小数乘法,先按整数乘法算出积,然后再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

三、巩固练习

1、完成第65页练一练第1题(说说你是如何点出积中的小数点的)

2、完成第65页练一练第2题(学生独立完成,集体校对)

3、完成练习十二第2题(对的要打“√”,不能不打。不对的要打“×”,然后再订正)

4、完成练习十二第3题。(说说数量关系,再列式计算)

四、课堂小结:今天你学到了什么知识?

教学反思:

面对学生出现的错误,使我不得不重新审视自己的课堂,并对此进行深刻反思:通过分析,我决定从以下几方面加以改进:

1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。

2、列竖式细化。强调:

①小数乘法列竖式时“末位对齐”。

②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。

③对于计算结果,要先点小数点再划掉积末尾的0。

《小数乘小数》的教学设计优秀篇5

教学内容:教科书p86-87例1及相应的“试一试”,练习十五第1-3题。

教学目标:1.引导学生在自主探究、小组交流等方式上,理解并掌握小数乘小数的方法,能正确计算相应的题目。

2.在探索计算方法的过程中,培养学生初步的 推理能力以及抽象、概括能力。

3.引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。

教学重点:确定积的小数点的位置。

教学难点:理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的过程。

教学过程:

一、复习旧知,引入课题

1.用竖式计算:

0.57×23 =         2.5×44=

提问:说说你是怎么算的?

2.根据13 × 12 = 156 ,直接写出下面各题的积。

1.3 × 12 =

13  × 1.2=

1.3 × 1.2 =

(要求学生回答问题要完整。例如:因为13 × 12 = 156,而1.3× 1.2中13缩小了十倍,所以积就要缩小十倍是15.6)

提问:我们以前学习了小数乘整数,那么 1.3 × 1.2是小数乘小数,它的结果你们说的对吗?学完这节课你就知道了(导入课题)

二、引导探究,掌握方法。

1.课件出示例题。提问:

① 从图中,你能获取那些数学信息?

② 根据这些信息,你能提出哪些数学问题?

③ 下面我们就来解决小明房间的面积有多大?

你会列式计算小明房间的面积吗?

(出示3.6×2.8=)

2、3.6×2.8=?和我们以前学过的小数乘法有什么不同?你能估算一下它的面积大约是多少吗?(指导学生估算3.6×2.8的积)

3、探索笔算方法

①通过刚才的估计,我们知道3.6×2.8的积应该在6~12之间,或者说是在9左右。那么准确的得数究竟是多少呢?我们可以用竖式计算。 (谁能在黑板上写出3.6×2.8的竖式)。

②怎么用竖式计算呢?小组里的同学讨论讨论,如果讨论好了,可以试着写在随堂本上

③教师巡视,指名一学生上黑板计算,师生互动,完成后说说你是怎么想的,引导学生思考小数乘小数按照整数乘整数的计算想起。(在计算3.6×2.8时想起36×28的笔算,师板书:  36

×28

④做错的同学订正一下。

⑤引导学生想一想小数乘小数怎么算?

三、自主探索,形成认识

教学“试一试”

1.我们现在来解决小明阳台面积的问题,请同学们列式计算(独立完成)。

2.观察黑板上的四道竖式,思考:

①结合具体题目,让学生说说两个因数与积的小数位数有什么关系?

②小数乘小数与小数乘整数在计算的过程中有什么相同点与不同点?

3.总结、归纳小数乘小数的计算方法。

四、巩固练习,加强理解

1.解决1.3×1.2=1.56

让学生说说为什么?(去掉问号)

2.你能给下面各题的积点上小数点吗?(p87第一题)

提问:说说为什么这样点小数点?要注意些什么?

4.用竖式计算:

4.6×1.2=         1.8×4.5=        10.4×2.5=

3.下面的计算对吗?把不对的改正过来(p89 第2题)

五、全课小结

这节课你有什么收获?有什么需要提醒其他同学的?

六、作业:p89第1.3题

《小数乘小数》的教学设计优秀篇6

《小数乘小数1》当堂检测题

班级:                姓名:

教师寄语:   相信自己,你是最棒的!

一、先说出下面各题的积应该是几位小数,再点小数点。

2 . 7            3 . 6                 4 . 6                 6 . 3

×  0 . 3       ×  0 . 9         × 0 . 3  5          × 0 . 0 6

8  1          3 2  4               2  3  0              3  7 8

二、错题门诊。

0 . 2 5                   1 . 0 6                      4 . 6

×       4                 ×  2 . 5                ×   2 . 7

1 . 0 0                    5  3 0                    3 2  2

三、不计算,说出下表中各栏的积有几位小数。

因数

0.4

12.13

28

1.2

1.26

因数

6

0.5

0.26

3.3

0.08

四、根据24×15=360填空。

(1)2.4×15=(      )              (2)2.4×1.5=(         )

(3)0.24×1.5=(      )           (4)0.24×0.15=(        )

五、计算下面各题。

(1)8.02×2.8         (2)2.8×0.65            (3)0.25×0.08

(4)1.36×3.7         (5)1.8×3.4             (6)3.6×0.74

一、下面各题对吗?把不对的改正过来。

2.7×1.8=0.6                           25×0.6=26

二、在○里填上“>”“<”或“=”。

123×0.8○123                 1×0.86○1

3.18×1.2○3.18               26.3×2.1○26.3

三、河马的最长寿命是52岁,蓝鲸的最长寿命是河马的1.7倍。你能算出蓝鲸的最长寿命是多少吗?

四、张老师到商店给7名同学买奖品,一副羽毛球拍15.6元,如果每人一副,张老师买奖品共花多少元?

五、先计算,再填空。

2=                               0.4=

3.2×   5=                      1.7×   0.15=

1.7=                               0.36=

一、用竖式计算

8            0. 8           2 3            2.3

×  3         ×   3        ×   4          ×  4

二、列竖式计算

3.5×7                    8.1×6                   0.85×4

三、我会算

1.2 3                  2 3. 6                1 . 7

×      6              ×        5          ×  2   3

四、把不对的算式改正过来

7.3×5=365             8.4×5=42.0              1.27×3=3.81

7 . 3                       8 . 4                           1 . 2 7

×    5                     ×    5                                     ×      3

3 6 5                     4 2. 0                           3  8. 1

你有什么收获?                                             。

自我评价:一般        较好          优秀

《小数乘小数》的教学设计优秀篇7

《小数乘小数》教后反思

今天上午经过精心的准备,邀请实习教师走进课堂听课,课题是《小数乘小数》(教案已发),下面谈谈今天教学后的反思。

1、孩子能说的我绝不说。说是学生思维的外在表现形式,培养学生说的能力也是我们课堂教学应该重点关注的。这节课孩子能说的有课前的复习题:根据乘法算式说出积的小数位数;小数乘整数的计算方法;为什么可以先用整数乘法来计算;归纳小数乘法计算方法;怎样点积里的小数点;在计算的时候要注意些什么;等等这些问题学生都可以说出来,所以我管好自己的嘴巴坚决代替学生说。而我就是在适当的时机提出这些问题引导孩子们说,说得不完整我再请其他孩子来补充说,需要所有孩子都说得时候,我就让他们同桌互说。

2、孩子能做的我绝不做。例题是小数乘小数,是新知识;但今天这两节课里几乎所有的孩子都能独立进行计算,这个时候我就放手让他们去算,再来说说怎样算的:有的孩子说前面我们学习了小数乘整数,就是先按照整数乘法计算方法来计算,再点小数点,所以在计算小数乘小数的时候,也是先按照整数乘法方法来计算,再点小数点(这类学生是联系旧知解决新问题的);有的孩子说:我先把3.6扩大10倍,再把2.8扩大10倍,然后再把积缩小100倍来想的(这类学生是通过预习来找到解决问题的新方法),总之是解决难点了。

3、培养学生提问意识。带着问题去学习,可以更好的投入到学习中去。这节课我给孩子们提供了提问的空间:解决完房间的面积后,我问:你还能提一个一步计算的乘法问题吗?课的最后,我问:你还能提出比较复杂一点的问题吗?孩子们能根据我的设计提出有解决价值的问题,使得练习有了一定的层次性。

4、渗透比较的思想。在比较中找出新知与旧知的联系,在比较中找到解决问题的策略,在比较中归纳计算方法。(1)、例题与复习的比较,从而引出本课教学的重点——小数乘小数;(2)求阳台面积与求房间面积比较,引出两位小数乘一位小数的新问题,但比较后得知,计算的方法是不变的,进行了知识的迁移,从而得出了小数乘小数的计算方法。(3)最后求总面积的两道算式的比较,引出把整副图看成一个大的长方形进行计算的这种方法比较简便;求阳台比房间小多少的时候,引出先用房间的长(3.6米)减去阳台的宽(1.15米)来计算比较简便。这里没有要求学生进行计算,但通过比较使所有学生感知到简便的列式方法,为后面的学习埋下伏笔。

5、课堂充满着变数,所以我要跟着变。(1)今天首先教学的b班,孩子们表现的很不错,我基本上是按着教案中的预设进行教学的。等到了a班,学生思想活跃,原本的一些设计就要跟着他们稍微调整。估算意识的渗透,b班是先估再算,a班是先算在估,这时处理估算的作用就有不同,a班算完了估,渗透了用估算来演算的教学思路;b班就是提高估算能力的一个小环节。(2)b班比较顺利,就带来了一个好处:时间宽裕,所以有时间将练一练第二题全部上课堂练习本;a班就来不及了,所以我就让他们自己任意选一题做,然后进行讲评。

“小数乘小数”教学有感

一、深刻把握教学内容,指导教学设计。

小数乘小数的计算方法,教材中是这样归纳的,先按照整数乘法计算,看因数中一共有几位小数,再从积的右边起数出几位,点上小数点。在实际教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成,看因数中一共有几位小数,积(指未化简的)就是几位小数。

因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点的方法。而教法上更多的依赖旧知识的迁移类推,让学生自主发现和归纳。

二、创设有效的问题情境,促进算理形成。

教学思考:

1.创设什么情境?

《义务教育数学课程标准(实验稿)》提出“让学生在生动具体的情境中学习数学”。我们知道,数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要。从这个角度出发,数学情境可以分为两种:生活情境,从生活中引入数学;问题情境,从数学知识本身的生长结构出发设置的情境。

所谓“有效“,数学课上的情境创设,应该能为数学知识和技能的学习提供支撑,能为数学思维的生长提供土壤,我们应当根据不同的教学内容,灵活的选择不同的情境。

苏教版教材以计算小明家的房间面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。这样,虽然符合从生活中发现数学、应用数学及解决数学问题的要求,但情境本身的设置对于小数乘小数的算理推导过程,并无实质的作用。相反,小数乘小数,与小数乘整数比较,前者需要同时看两个因数一共有几位小数,而后者只有一个因数是小数,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。所以,小数乘整数的计算方法是小数乘小数计算方法的推导基础,以此知识的生长点作为问题情境是可行的。

因此,本节课我对教材的呈现方式作了调整,首先通过小数乘整数的推理计算,引导学生弄清计算方法。再出示小数乘小数的题目,自主探索。在掌握方法后再去解决实际生活中的一些问题。

2.怎样让问题情境富有“吸引力”?

小数乘小数的最关键的地方是确定积的小数点的位置。适当弱化积的计算过程,重点突出寻找积的小数位数与因数的小数位数的关系,可以保证学生思维的高效性,也避免计算的枯燥无味的感觉。

因此,教学中不能简单的做题目、再总结,做题目、再总结的机械循环。我通过四次反复的出示根据整数乘法的积,,确定小数乘法的积的小数点,每出现一次,都有新的要求,每完成一次,都有新的收获。

推荐访问:小数 教学设计 优秀 小数乘小数教学设计一等奖 小数乘小数教学设计及设计意图 小数乘小数教学设计教材分析 小数乘小数的优秀教案 小数乘小数教学内容 小学数学小数乘小数优秀教案 小学数学小数乘小数教学设计 小数乘小数的教学目标和重难点 小数乘小数的教学设计和教学反思